3 research outputs found
Self-sampling is appropriate for detection of Staphylococcus aureus: a validation study
<p>Abstract</p> <p>Background</p> <p>Studies frequently use nasal swabs to determine <it>Staphylococcus aureus</it> carriage. Self-sampling would be extremely useful in an outhospital research situation, but has not been studied in a healthy population. We studied the similarity of self-samples and investigator-samples in nares and pharynxes of healthy study subjects (hospital staff) in the Netherlands.</p> <p>Methods</p> <p>One hundred and five nursing personnel members were sampled 4 times in random order after viewing an instruction paper: 1) nasal self-sample, 2) pharyngeal self-sample, 3) nasal investigator-sample, and 4) pharyngeal investigator-sample.</p> <p>Results</p> <p>For nasal samples, agreement is 93% with a kappa coefficient of 0.85 (95% CI 0.74-0.96), indicating excellent agreement, for pharyngeal samples agreement is 83% and the kappa coefficient is 0.60 (95% CI 0.43-0.76), indicating good agreement. In both sampling sites self-samples even detected more <it>S. aureus</it> than investigator-samples.</p> <p>Conclusions</p> <p>This means that self-samples are appropriate for detection of <it>Staphylococcus aureus</it> and methicillin-resistant <it>Staphylococcus aureus</it>.</p
Livestock-associated MRSA colonization of occupational exposed workers and households in Europe: a review
The worldwide escalation in antibiotic resistant microorganisms has sustained the increasing concerns regarding antibiotics extensive use in animal food industry, which can result in a selection pressure that is driving the emergence of strains such as methicillin-resistant staphylococcus aureus (MRSA). Human MRSA infections are a well-known cause of numerous hospitalizations and deaths associated with extremely high mortality rates for invasive infections. Both animals and humans can become bacterial reservoirs of Livestock Associated MRSA (LA-MRSA) in which colonization predisposes to staphylococcal acquisition in clinical settings and to transfer the infection to others including household members. Biomonitoring of occupational exposed individuals which spend several hours per day in direct contact with MRSA-positive animals and thus are irrefutably exposed to a high risk of nasal colonization is imperative in order to develop effective preventive strategies. Here we performed an extensive review regarding the prevalence of LA- MRSA colonization in both occupational exposed individuals and their house-holds in a European context.info:eu-repo/semantics/publishedVersio
High prevalence of nasal MRSA carriage in slaughterhouse workers in contact with live pigs in The Netherlands.
Item does not contain fulltextLivestock-associated MRSA has been found in various animals, livestock farmers and retail meat. This study aimed to determine the prevalence and determinants of nasal MRSA carriage in pig slaughterhouse workers. Three large pig slaughterhouses in The Netherlands were studied in 2008 using human and environmental samples. The overall prevalence of nasal MRSA carriage in employees of pig slaughterhouses was 5.6% (14/249) (95% CI 3.4-9.2) and working with live pigs was the single most important factor for being MRSA positive (OR 38.2, P<0.0001). At the start of the day MRSA was only found in environmental samples from the lairages (10/12), whereas at the end of the day MRSA was found in the lairages (11/12), the dirty (5/12) and clean (3/12) areas and green offal (1/3). The MRSA status of the environmental samples correlated well with the MRSA status of humans working in these sections (r=0.75). In conclusion, a high prevalence of nasal MRSA carriage was found in pig-slaughterhouse workers, and working with live pigs is the most important risk factor. Exact transmission routes from animals to humans remain to be elucidated in order to enable application of targeted preventive measures.1 mei 201