56 research outputs found

    Carboniferous plant physiology breaks the mold

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155970/1/nph16460-sup-0001-SupInfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155970/2/nph16460_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155970/3/nph16460.pd

    Classification of Camellia (Theaceae) Species Using Leaf Architecture Variations and Pattern Recognition Techniques

    Get PDF
    Leaf characters have been successfully utilized to classify Camellia (Theaceae) species; however, leaf characters combined with supervised pattern recognition techniques have not been previously explored. We present results of using leaf morphological and venation characters of 93 species from five sections of genus Camellia to assess the effectiveness of several supervised pattern recognition techniques for classifications and compare their accuracy. Clustering approach, Learning Vector Quantization neural network (LVQ-ANN), Dynamic Architecture for Artificial Neural Networks (DAN2), and C-support vector machines (SVM) are used to discriminate 93 species from five sections of genus Camellia (11 in sect. Furfuracea, 16 in sect. Paracamellia, 12 in sect. Tuberculata, 34 in sect. Camellia, and 20 in sect. Theopsis). DAN2 and SVM show excellent classification results for genus Camellia with DAN2's accuracy of 97.92% and 91.11% for training and testing data sets respectively. The RBF-SVM results of 97.92% and 97.78% for training and testing offer the best classification accuracy. A hierarchical dendrogram based on leaf architecture data has confirmed the morphological classification of the five sections as previously proposed. The overall results suggest that leaf architecture-based data analysis using supervised pattern recognition techniques, especially DAN2 and SVM discrimination methods, is excellent for identification of Camellia species

    A palaeoenvironmental reconstruction of the Middle Jurassic of Sardinia (Italy) based on integrated palaeobotanical, palynological and lithofacies data assessment

    Get PDF
    During the Jurassic, Sardinia was close to continental Europe. Emerged lands started from a single island forming in time a progressively sinking archipelago. This complex palaeogeographic situation gave origin to a diverse landscape with a variety of habitats. Collection- and literature-based palaeobotanical, palynological and lithofacies studies were carried out on the Genna Selole Formation for palaeoenvironmental interpretations. They evidence a generally warm and humid climate, affected occasionally by drier periods. Several distinct ecosystems can be discerned in this climate, including alluvial fans with braided streams (Laconi-Gadoni lithofacies), paralic swamps and coasts (Nurri-Escalaplano lithofacies), and lagoons and shallow marine environments (Ussassai-Perdasdefogu lithofacies). The non-marine environments were covered by extensive lowland and a reduced coastal and tidally influenced environment. Both the river and the upland/hinterland environments are of limited impact for the reconstruction. The difference between the composition of the palynological and palaeobotanical associations evidence the discrepancies obtained using only one of those proxies. The macroremains reflect the local palaeoenvironments better, although subjected to a transport bias (e.g. missing upland elements and delicate organs), whereas the palynomorphs permit to reconstruct the regional palaeoclimate. Considering that the flora of Sardinia is the southernmost of all Middle Jurassic European floras, this multidisciplinary study increases our understanding of the terrestrial environments during that period of time
    • 

    corecore