24 research outputs found

    Development of an AQUA Based Near-Surface Parameter Retrieval

    Get PDF
    The production of a satellite based turbulent surface flux product relies critically upon the near-surface input parameters. Development of retrieval algorithms for the necessary near-surface variables of wind speed, specific humidity, air temperature, and sea surface temperature has proceeded relatively independent of each another until recently. The use of a neural network approach using Special Sensor Microwave/Imager (SSM/I) data in conjunction with a first guess sea surface temperature has led to successful retrieval of all parameters simultaneously. However, SSM/I frequencies lack inherent sensitivity to the sea surface temperature (SST). Recent studies have found improved air temperature and humidity retrievals can be obtained via inclusion of microwave sounding channels weighted in the lower troposphere. The inclusion of SSM/I-like frequencies as well as SST-sensitive microwave channels on AMSR-E along with AMSU-A sounding data onboard the AQUA platform provides an unique opportunity. That is the ability to provide near-simultaneous (in space and time) measurements allowing the retrieval of all the near-surface variables, including SST. This study shows results of a new algorithm designed to take advantage of the unique sampling ability of AQUA based sensors. Results from a neural network based methodology will be shown as compared to in-situ based observations of near-surface variables. Implications for creation of an AQUA based turbulent surface product are also discussed

    Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    Get PDF
    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered

    Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    Get PDF
    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations

    Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    Get PDF
    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth's energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat fluxes produced by MERRA compare favorably to observationally based estimates. However, MERRA is distinct in terms of amplitude. These results suggest that MERRA is likely to be a valuable resource for a number of research applications though, as with all turbulent flux estimates, systematic issues should be taken into accoun

    The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation

    Get PDF
    Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water cycle EXperiment (GEWEX) Data and Assessment Panel (GDAP), the SeaFlux Project was created to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans. The most current release of the SeaFlux product is Version 1.0; this represents the initial release of turbulent surface heat fluxes, associated near-surface variables including a diurnally varying sea surface temperature

    Thermodynamics in the Suppressed Phase of the Madden-Julian Oscillation Using a Multiplatform Strategy

    Get PDF
    The Madden-Julian Oscillation (MJO) represents a prominent mode of intraseasonal tropical variability. It is manifest by coherent large-scale changes in atmospheric circulation, convection, and thermodynamic processes. Preconditioning of the environment prior to the active phase of the MJO has been noted, but the balance of theorized mechanisms to accomplish this process remains unresolved. Further, there is a lack of consensus on the means by which primary initiation of an MJO event occurs. Observational and modeling efforts have recently been undertaken to advance our understanding of the physical underpinnings governing MJO development. However these intensive studies are often limited in space and/or time and are potentially subject to model deficiencies. Satellite observations, especially those providing vertical resolution of temperature and moisture, provide an opportunity to expand our knowledge of processes critical to MJO initiation and preconditioning. This work will provide an analysis of suppressed phase thermodynamics with an emphasis on the use of a complementary suite of satellite observations including AIRS/AMSU-A profiles, CERES radiative fluxes, and cloud properties observed by MODIS. Emphasis of this work will regard the distribution of cloud regimes, their radiative-convective effects, and their relationship to moist static energy during the recharge and suppressed stages of MJO initiation and eastward propagation. The analyses will make use of cloud regimes from MODIS observations to provide a compositing technique that enables the identification of systematic connections between different cloud regimes and the larger scale environment. Within these cloud regimes, the relationship between the associated cloud-radiative effects observed by CERES, vertically-resolved and vertically-integrated thermodynamics using AIRS/AMSU-A observations, and atmospheric boundary layer fluxes will be demonstrated
    corecore