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Introduction and Motivation
The surface turbulent fluxes of moisture and heat are essential components of the
global energy and water cycles. Estimation of these fluxes across the global oceans
requires the knowledge and application of four surface bulk variables to a suitable bulk
flux algorithm: i) wind speed (Wspd), ii) air specific humidity (Qair), iii) air temperature
(Tair), and surface skin temperature (SST).
Moored buoys and voluntary observing ships (VOS) provide a valuable standard for
evaluation, but they are quite sparse resulting in large sampling uncertainties of the
bulk variables, especially at monthly and shorter time scales. This leads to increased
uncertainties in the large-scale estimates of surface fluxes from in situ measurements
alone.
Global coverage by VOS is hampered by the requirements of simultaneous
measurements of all 4 bulk parameters and associated observing height metadata.
There has been a recent, steady decline in VOS observations and their global
coverage; a nearly 15% drop in areal coverage is evident since the late 1980’s.
Passive microwave observations provide an alternative source for estimating the near-
surface bulk variables and hence the surface turbulent fluxes. They provide
significantly improved global coverage at daily time scales and thus narrow sampling
uncertainties especially for monthly and annual means.

Surface Retrievals
From statistical decision theory, finding a “best” model for predicting a response
variable—for squared error loss— results in the optimal solution (Hastie et al. 2009):

𝒇 𝒙 = 𝑬 𝒀 𝑿 = 𝒙), i.e. the conditional expectation
Different retrieval algorithms diverge with respect to how one approximates this
conditional expectation given potential a priori constraints and sources of information.
Passive microwave imagers and sounders have been designed to observe at
frequencies that provide information SST, Wspd, Qair, and to a lesser extent Tair.
While microwaves do transmit through clouds, cloud liquid (and rain) water emission
remains a major component of the observed signal and obscures the surface signal.

Validation of Surface Parameters
A neural network has been trained to estimate the
surface bulk variables using data from SSMIS, AMSR-
2, and GMI collocated with quality-controlled moored
surface buoys.
The relationships are robust and reproducible
between sensors and for varying differences in the
underlying collocation datasets and levels of
cloud/rain masking.
Overall, these retrievals exhibit small total biases,
root-mean-square errors on par with reanalyses, and
significant correlation. However, conditional biases do
remain particularly towards the extremes (both low
and high) of the distributions.

Regional Biases and Dynamical Regimes
Several independent efforts are being made to estimate satellite-derived surface turbulent heat fluxes. These generally
use similar sets of channels from passive microwave instruments but diverge with respect to the use of first-guess
information, statistical regression technique, and surface training datasets.
Studies have observed large-scale regional patterns of biases in several of these products thus bringing into question
the independence of errors. Investigation of these patterns reveals they are geographically co-aligned with known
large-scale dynamical regimes and cloud structures.
Wong et al. (2016) decomposed the integrated water budget tendency equation as:

𝑃 − 𝐸 +
𝜕𝑄
𝜕𝑡 = −𝑄∇ ⋅ 𝑽	 − 𝑽 ⋅ ∇𝑄 = 𝑄𝐶𝑂𝑁 + 𝑄𝐴𝐷𝑉

where 𝑄 represents vertically integrated water vapor and 𝑽 is the scaled vertically integrated vector moisture flux.
Analyses revealed large-scale patterns of ascent/descent and convective instability with respect to dynamical
convergence and moisture advection. Here, we show that large-scale cloud regimes as identified by ISCCP Global
Weather States also share significant overlap with regimes as defined in this moist-dynamics phase space. Further, the
large-scale conditional biases observed in several of the latest-generation satellite derived products are distinctly
stratified as well.
We can relate the large-scales controls on the dynamics to the generation of clouds (which impact the retrievals)
alteration of the vertical distribution of water vapor within these regimes. Both features result in conditional errors in the
surface retrievals, particularly for surface humidity as imagers provide very limited vertically-resolved information.

State-Dependent Bias Corrections
The systematic error of an estimate, 𝑦,  can be represented at the total, weighted 
contribution of bias errors, 𝛿, from a set of K individual regimes as:
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where the weight is the relative frequency of occurrence of that regime. Rather than 
implementing a constant bias correction at a location, we can thus develop a bias 
correction that is applied with respect to individual regimes. 
Here, we consider each bin in the QCON-QADV phase diagram as a regime and 
apply a state-dependent bias correction to different satellite-derived Qair estimates. 
Because the regimes exhibit strong concentration in space (as controlled by large-
scale dynamics) so to do the time-mean bias correction patterns.
On a daily timescale, however, the bias correction show substantial variability and 
are organized by the prevailing dynamical state during that day. 
The bias correction can not fully eliminate the biases, however, as the bias is 
conditioned across all locations. Nevertheless, substantial mitigation of biases — as 
tuned for each product — is achievable resulting in more consistent and accurate 
satellite-derived Qair estimates.

The areal coverage of near-surface bulk variables
over the ocean is shown for VOS (IVAD) and
passive microwave imagers for a day. A 31-day
moving window also illustrates the expected
coverage for IVAD when averaging at monthly
time periods.

Estimates of the distribution (PDF) are shown for
Wspd, Qair, and Tair based on the full and sub-
sampled by IVAD (“Masked”) SeaFlux Climate
Data Record. Shading represents the range of
PDF estimates for individual months. Note the
larger monthly PDF variability for Masked.

Estimates of the univariate (left) and multivariate (right)
conditional mean for Qair is shown for a large
collocation dataset of microwave imager and buoy
observations. For the univariate case, note the impact
on the conditional mean as cloud liquid water is masked.

As more liquid water is masked, the relative change in the
conditional mean decreases rapidly due the nonlinear
impacts of liquid water emission. After masking 10% of
observations, the relative changes fall below ~0.5% per
1% increase of the mask for all 4 surface variables.

Density (shaded) scatterplots of the observed and estimated parameters using
a validation dataset are shown for each surface parameter. Binned means are
shown for each sensor and the 1:1 line for reference. Note the consistency
between the individual sensors.

(Left) The relative frequency of occurrence (RFO) is shown for two ISCCP regimes — 3 and 7 — representing
respectively stratiform anvils with mid-level congestus and fair-weather cumulus. The RFO is also shown within the
QCON-QADV phase-diagram; note the significant concentration of each regime in different quadrants of this space.
Also shown are the fields of MERRA-2 cloud liquid water and the ratio of Surface-900mb water vapor to Q.
(Above) Maps of annual mean biases are shown for two passive microwave estimates of Qair validated with VOS
observations. Biases are also shown as stratified within the QCON-QADV phase space for both these and an
additional two products that exhibit similar geographic structures. Note the strong partitioning of biases in this space.

Systematic errors of raw (top) and bias-corrected
fields are shown for two satellite-derived Qair
estimates. The time-mean bias corrections are
also shown for each as well as a single daily
“snapshot”. Note the mitigation of tropical moist
and dry biases in both products and how these are
effected using two different time-mean bias
correction patterns.

Area-average time series of Qair are
shown for 6 different satellite-derived
estimates for both raw (top) and bias-
corrected fields over the common
observing period 1999-2008. Note how
the state-dependent bias correction
results in more consistent — and
presumably more accurate with
reference to VOS — surface estimates
across the products.
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