112 research outputs found

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    A High-Throughput Screen for Tuberculosis Progression

    Get PDF
    One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of tuberculosis is fast becoming the bottleneck in tuberculosis research. We successfully developed such a system using the zebrafish Mycobacterium marinum infection model, which is a well-characterized model for tuberculosis progression with biomedical significance, mimicking hallmarks of human tuberculosis pathology. Importantly, we demonstrate the suitability of our system to directly study M. tuberculosis, showing for the first time that the human pathogen can propagate in this vertebrate model, resulting in similar early disease symptoms to those observed upon M. marinum infection. Our system is capable of screening for disease progression via robotic yolk injection of early embryos and visual flow screening of late-stage larvae. We also show that this system can reliably recapitulate the standard caudal vein injection method with a throughput level of 2,000 embryos per hour. We additionally demonstrate the possibility of studying signal transduction leading to disease progression using reverse genetics at high-throughput levels. Importantly, we use reference compounds to validate our system in the testing of molecules that prevent tuberculosis progression, making it highly suited for investigating novel anti-tuberculosis compounds in vivo

    Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging

    Get PDF
    Cardiovascular magnetic resonance (CMR) imaging provides highly accurate measurements of biventricular volumes and mass and is frequently used in the follow-up of patients with acquired and congenital heart disease (CHD). Data on reproducibility are limited in patients with CHD, while measurements should be reproducible, since CMR imaging has a main contribution to decision making and timing of (re)interventions. The aim of this study was to assess intra-observer and interobserver variability of biventricular function, volumes and mass in a heterogeneous group of patients with CHD using CMR imaging. Thirty-five patients with CHD (7–62Β years) were included in this study. A short axis set was acquired using a steady-state free precession pulse sequence. Intra-observer and interobserver variability was assessed for left ventricular (LV) and right ventricular (RV) volumes, function and mass by calculating the coefficient of variability. Intra-observer variability was between 2.9 and 6.8% and interobserver variability was between 3.9 and 10.2%. Overall, variations were smallest for biventricular end-diastolic volume and highest for biventricular end-systolic volume. Intra-observer and interobserver variability of biventricular parameters assessed by CMR imaging is good for a heterogeneous group of patients with CHD. CMR imaging is an accurate and reproducible method and should allow adequate assessment of changes in ventricular size and global ventricular function

    M-CSF Induces Monocyte Survival by Activating NF-ΞΊB p65 Phosphorylation at Ser276 via Protein Kinase C

    Get PDF
    Macrophage colony-stimulating factor (M-CSF) promotes mononuclear phagocyte survival and proliferation. The transcription factor Nuclear Factor-kappaB (NF-ΞΊB) is a key regulator of genes involved in M-CSF-induced mononuclear phagocyte survival and this study focused at identifying the mechanism of NF-ΞΊB transcriptional activation. Here, we demonstrate that M-CSF stimulated NF-ΞΊB transcriptional activity in human monocyte-derived macrophages (MDMs) and the murine macrophage cell line RAW 264.7. The general protein kinase C (PKC) inhibitor Ro-31-8220, the conventional PKCΞ±/Ξ² inhibitor GΓΆ-6976, overexpression of dominant negative PKCΞ± constructs and PKCΞ± siRNA reduced NF-ΞΊB activity in response to M-CSF. Interestingly, Ro-31-8220 reduced Ser276 phosphorylation of NF-ΞΊBp65 leading to decreased M-CSF-induced monocyte survival. In this report, we identify conventional PKCs, including PKCΞ± as important upstream kinases for M-CSF-induced NF-ΞΊB transcriptional activation, NF-ΞΊB-regulated gene expression, NF-ΞΊB p65 Ser276 phosphorylation, and macrophage survival. Lastly, we find that NF-ΞΊB p65 Ser276 plays an important role in basal and M-CSF-stimulated NF-ΞΊB activation in human mononuclear phagocytes

    M-CSF Signals through the MAPK/ERK Pathway via Sp1 to Induce VEGF Production and Induces Angiogenesis In Vivo

    Get PDF
    BACKGROUND: M-CSF recruits mononuclear phagocytes which regulate processes such as angiogenesis and metastases in tumors. VEGF is a potent activator of angiogenesis as it promotes endothelial cell proliferation and new blood vessel formation. Previously, we reported that in vitro M-CSF induces the expression of biologically-active VEGF from human monocytes. METHODOLOGY AND RESULTS: In this study, we demonstrate the molecular mechanism of M-CSF-induced VEGF production. Using a construct containing the VEGF promoter linked to a luciferase reporter, we found that a mutation reducing HIF binding to the VEGF promoter had no significant effect on luciferase production induced by M-CSF stimulation. Further analysis revealed that M-CSF induced VEGF through the MAPK/ERK signaling pathway via the transcription factor, Sp1. Thus, inhibition of either ERK or Sp1 suppressed M-CSF-induced VEGF at the mRNA and protein level. M-CSF also induced the nuclear localization of Sp1, which was blocked by ERK inhibition. Finally, mutating the Sp1 binding sites within the VEGF promoter or inhibiting ERK decreased VEGF promoter activity in M-CSF-treated human monocytes. To evaluate the biological significance of M-CSF induced VEGF production, we used an in vivo angiogenesis model to illustrate the ability of M-CSF to recruit mononuclear phagocytes, increase VEGF levels, and enhance angiogenesis. Importantly, the addition of a neutralizing VEGF antibody abolished M-CSF-induced blood vessel formation. CONCLUSION: These data delineate an ERK- and Sp1-dependent mechanism of M-CSF induced VEGF production and demonstrate for the first time the ability of M-CSF to induce angiogenesis via VEGF in vivo

    Phase 1, open-label, dose-escalation study on the safety, pharmacokinetics, and preliminary efficacy of intravenous Coxsackievirus A21 (V937), with or without pembrolizumab, in patients with advanced solid tumors

    Get PDF
    Background Oncolytic virus V937 showed activity and safety with intratumoral administration. This phase 1 study evaluated intravenous V937Β±pembrolizumab in patients with advanced solid tumors. Methods Patients had advanced non-small cell lung cancer (NSCLC), urothelial cancer, metastatic castration-resistant prostate cancer, or melanoma in part A (V937 monotherapy), and metastatic NSCLC or urothelial cancer in part B (V937+pembrolizumab). Prior immunotherapy was permitted >28 days before study treatment. Patients received intravenous V937 on days 1, 3, and 5 (also on day 8 in part B) of the first 21-day cycle and on day 1 of subsequent cycles for eight cycles. Three ascending dose-escalation cohorts were studied. Dose-escalation proceeded if no dose-limiting toxicities (DLTs) occurred in cycle 1 of the previous cohort. In part B, patients also received pembrolizumab 200 mg every 3 weeks from day 8 for 2 years; dose-expansion occurred at the highest-dose cohort. Serial biopsies were performed. Results No DLTs occurred in parts A (n=18) or B (n=85). Grade 3–5 treatment-related adverse events (AEs) were not observed in part A and were experienced by 10 (12%) patients in part B. The most frequent treatment-related AEs (any grade) in part B were fatigue (36%), pruritus (18%), myalgia (14%), diarrhea (13%), pyrexia (13%), influenza-like illness (12%), and nausea (12%). At the highest tested dose, median intratumoral V937 concentrations were 117,631 copies/mL on day 8, cycle 1 in part A (n=6) and below the detection limit for most patients (86% (19/22)) on day 15, cycle 1 in part B. Objective response rates were 6% (part A), 9% in the NSCLC dose-expansion cohort (n=43), and 20% in the urothelial cancer dose-expansion cohort (n=35). Conclusions Intravenous V937+pembrolizumab had a manageable safety profile. Although V937 was detected in tumor tissue, in NSCLC and urothelial cancer, efficacy was not greater than that observed in previous studies with pembrolizumab monotherapy. Trial registration number NCT02043665

    Inducible Costimulator Expression Regulates the Magnitude of Th2-Mediated Airway Inflammation by Regulating the Number of Th2 Cells

    Get PDF
    Inducible Costimulator (ICOS) is an important regulator of Th2 lymphocyte function and a potential immunotherapeutic target for allergy and asthma. A SNP in the ICOS 5' promoter in humans is associated with increased atopy and serum IgE in a founder population and increased ICOS surface expression and Th2 cytokine production from peripheral blood mononuclear cells. However, it is unknown if increased ICOS expression contributes to disease progression or is a result of disease pathology.We developed a mouse model in which ICOS surface expression levels are genetically predetermined to test our hypothesis that genetic regulation of ICOS expression controls the severity of Th2 responses in vivo. Using ICOS+/+ and ICOS+/- mice in a Th2 model of airway inflammation, we found that T cells from the ICOS+/- mice had reduced ICOS expression and decreased Th2-mediated inflammation in vivo. Although the activation status of the T cells did not differ, T cells isolated from the lungs and draining lymph nodes of ICOS+/- mice at the peak of inflammation produced less Th2 cytokines upon stimulation ex vivo. Using 4get mice, which express GFP upon IL-4 transcription, we determined that the decreased Th2 cytokines in ICOS+/- is due to reduced percentage of Th2 cells and not a defect in their ability to produce IL-4.These data suggest that in both mice and humans, the level of ICOS surface expression regulates the magnitude of the in vivo Th2 response, perhaps by influencing Th2 differentiation

    Cdk2 Is Required for p53-Independent G2/M Checkpoint Control

    Get PDF
    The activation of phase-specific cyclin-dependent kinases (Cdks) is associated with ordered cell cycle transitions. Among the mammalian Cdks, only Cdk1 is essential for somatic cell proliferation. Cdk1 can apparently substitute for Cdk2, Cdk4, and Cdk6, which are individually dispensable in mice. It is unclear if all functions of non-essential Cdks are fully redundant with Cdk1. Using a genetic approach, we show that Cdk2, the S-phase Cdk, uniquely controls the G2/M checkpoint that prevents cells with damaged DNA from initiating mitosis. CDK2-nullizygous human cells exposed to ionizing radiation failed to exclude Cdk1 from the nucleus and exhibited a marked defect in G2/M arrest that was unmasked by the disruption of P53. The DNA replication licensing protein Cdc6, which is normally stabilized by Cdk2, was physically associated with the checkpoint regulator ATR and was required for efficient ATR-Chk1-Cdc25A signaling. These findings demonstrate that Cdk2 maintains a balance of S-phase regulatory proteins and thereby coordinates subsequent p53-independent G2/M checkpoint activation

    Detection of microRNA Expression in Human Peripheral Blood Microvesicles

    Get PDF
    MicroRNAs (miRNA) are small non-coding RNAs that regulate translation of mRNA and protein. Loss or enhanced expression of miRNAs is associated with several diseases, including cancer. However, the identification of circulating miRNA in healthy donors is not well characterized. Microvesicles, also known as exosomes or microparticles, circulate in the peripheral blood and can stimulate cellular signaling. In this study, we hypothesized that under normal healthy conditions, microvesicles contain miRNAs, contributing to biological homeostasis.Microvesicles were isolated from the plasma of normal healthy individuals. RNA was isolated from both the microvesicles and matched mononuclear cells and profiled for 420 known mature miRNAs by real-time PCR. Hierarchical clustering of the data sets indicated significant differences in miRNA expression between peripheral blood mononuclear cells (PBMC) and plasma microvesicles. We observed 71 miRNAs co-expressed between microvesicles and PBMC. Notably, we found 33 and 4 significantly differentially expressed miRNAs in the plasma microvesicles and mononuclear cells, respectively. Prediction of the gene targets and associated biological pathways regulated by the detected miRNAs was performed. The majority of the miRNAs expressed in the microvesicles from the blood were predicted to regulate cellular differentiation of blood cells and metabolic pathways. Interestingly, a select few miRNAs were also predicted to be important modulators of immune function.This study is the first to identify and define miRNA expression in circulating plasma microvesicles of normal subjects. The data generated from this study provides a basis for future studies to determine the predictive role of peripheral blood miRNA signatures in human disease and will enable the definition of the biological processes regulated by these miRNA
    • …
    corecore