8 research outputs found

    All Weather Calibration of Wide Field Optical and NIR Surveys

    Get PDF
    The science goals for ground-based large-area surveys, such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better. This performance will need to be achieved with data taken over the course of many years, and often in less than ideal conditions. This paper describes a strategy to achieve precise internal calibration of imaging survey data taken in less than photometric conditions, and reports results of an observational study of the techniques needed to implement this strategy. We find that images of celestial fields used in this case study with stellar densities of order one per arcmin-squared and taken through cloudless skies can be calibrated with relative precision of 0.5 per cent (reproducibility). We report measurements of spatial structure functions of cloud absorption observed over a range of atmospheric conditions, and find it possible to achieve photometric measurements that are reproducible to 1 per cent in images that were taken through cloud layers that transmit as little as 25 per cent of the incident optical flux (1.5 magnitudes of extinction). We find, however, that photometric precision below 1 per cent is impeded by the thinnest detectable cloud layers. We comment on implications of these results for the observing strategies of future surveys.Comment: Accepted for publication in The Astronomical Journal (AJ

    Sub-percent Photometry: Faint DA White Dwarf Spectophotometric Standards for Astrophysical Observatories

    Get PDF
    We have established a network of 19 faint (16.5 mag <V<< V < 19 mag) northern and equatorial DA white dwarfs as spectrophotometric standards for present and future wide-field observatories. Our analysis infers SED models for the stars that are tied to the three CALSPEC primary standards. Our SED models are consistent with panchromatic Hubble Space Telescope (HSTHST) photometry to better than 1%. The excellent agreement between observations and models validates the use of non-local-thermodynamic-equilibrium (NLTE) DA white dwarf atmospheres extinguished by interstellar dust as accurate spectrophotometric references. Our standards are accessible from both hemispheres and suitable for ground and space-based observatories covering the ultraviolet to the near infrared. The high-precision of these faint sources make our network of standards ideally suited for any experiment that has very stringent requirements on flux calibration, such as studies of dark energy using the Large Synoptic Survey Telescope (LSST) and the Wide-Field Infrared Survey Telescope (WFIRSTWFIRST).Comment: 46 pages, 23 figures, 8 tables, accepted for publication in ApJ

    All-Sky Faint DA White Dwarf Spectrophotometric Standards for Astrophysical Observatories: The Complete Sample

    Full text link
    Hot DA white dwarfs have fully radiative pure hydrogen atmospheres that are the least complicated to model. Pulsationally stable, they are fully characterized by their effective temperature Teff, and surface gravity log g, which can be deduced from their optical spectra and used in model atmospheres to predict their spectral energy distribution (SED). Based on this, three bright DAWDs have defined the spectrophotometric flux scale of the CALSPEC system of HST. In this paper we add 32 new fainter (16.5 < V < 19.5) DAWDs spread over the whole sky and within the dynamic range of large telescopes. Using ground based spectra and panchromatic photometry with HST/WFC3, a new hierarchical analysis process demonstrates consistency between model and observed fluxes above the terrestrial atmosphere to < 0.004 mag rms from 2700 {\AA} to 7750 {\AA} and to 0.008 mag rms at 1.6{\mu}m for the total set of 35 DAWDs. These DAWDs are thus established as spectrophotometric standards with unprecedented accuracy from the near ultraviolet to the near-infrared, suitable for both ground and space based observatories. They are embedded in existing surveys like SDSS, PanSTARRS and GAIA, and will be naturally included in the LSST survey by Rubin Observatory. With additional data and analysis to extend the validity of their SEDs further into the IR, these spectrophotometric standard stars could be used for JWST, as well as for the Roman and Euclid observatories.Comment: Accepted for publication in Astrophysical Journal. Corrected error in Table 10 and associated Fig 7 in which RP and BP values for the 3 CALSPEC standards had been transpose
    corecore