2,655 research outputs found
Maude: specification and programming in rewriting logic
Maude is a high-level language and a high-performance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both user-definable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and object-oriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude
Towards the specification and verification of modal properties for structured systems
System specification formalisms should come with suitable property specification languages and effective verification tools. We sketch a framework for the verification of quantified temporal properties of systems with dynamically evolving structure. We consider visual specification formalisms like graph transformation systems (GTS) where program states are modelled as graphs, and the program
behavior is specified by graph transformation rules. The state space of a GTS can be represented as a graph transition system (GTrS), i.e. a transition system with states and transitions labelled, respectively, with a graph, and with a partial morphism representing the evolution of state components. Unfortunately, GTrSs are prohibitively large or infinite even for simple systems, making verification intractable and hence calling for appropriate abstraction techniques
Red Quasars and Quasar Evolution: the Case of BALQSO FIRST J155633.8+351758
We present the first near-IR spectroscopy of the z=1.5 radio-loud BALQSO
FIRST J155633.8+351758. Both the Balmer decrement and the slope of the
rest-frame UV-optical continuum independently suggest a modest amount of
extinction along the line of sight to the BLR (E(B-V)~0.5 for SMC-type screen
extinction at the QSO redshift). The implied gas column density along the line
of sight is much less than is implied by the weak X-ray flux of the object,
suggesting that either the BLR and BAL region have a low dust-to-gas ratio, or
that the rest-frame optical light encounters significantly lower mean column
density lines of sight than the X-ray emission. From the rest-frame UV-optical
spectrum, we are able to constrain the stellar mass content of the system.
Comparing the maximal stellar mass with the black hole mass estimated from the
bolometric luminosity of the QSO, we find that the ratio of the black hole to
stellar mass may be comparable to the Magorrian value, which would imply that
the Magorrian relation is already in place at z=1.5. However, multiple factors
favor a much larger black hole to stellar mass ratio. This would imply that if
the Magorrian relation characterizes the late history of QSOs, and the
situation observed for F1556+3517 is typical of the early evolutionary history
of QSOs, central black hole masses develop more rapidly than bulge masses.
[ABRIDGED]Comment: 23 pages, 4 embedded postscript figures; Accepted for publication in
The Astronomical Journal, December 200
Dust Emission from Active Galactic Nuclei
Unified schemes of active galactic nuclei (AGN) require an obscuring dusty
torus around the central source, giving rise to Seyfert 1 line spectrum for
pole-on viewing and Seyfert 2 characteristics in edge-on sources. Although the
observed IR is in broad agreement with this scheme, the behavior of the 10
micron silicate feature and the width of the far-IR emission peak remained
serious problems in all previous modeling efforts. We show that these problems
find a natural explanation if the dust is contained in about 5-10 clouds along
radial rays through the torus. The spectral energy distributions (SED) of both
type 1 and type 2 sources are properly reproduced from different viewpoints of
the same object if the visual optical depth of each cloud is larger than about
60 and the clouds' mean free path increases roughly in proportion to radial
distance.Comment: 11 pages, submitted to ApJ Letter
Absorption lines from magnetically-driven winds in X-ray binaries
High resolution X-ray spectra of black hole X-ray binaries (BHBs) show
blueshifted absorption lines from disk winds which seem to be equatorial. Winds
occur in the Softer (disk-dominated) states of the outburst and are less
prominent or absent in the Harder (power-law dominated) states. We use
self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain
the disk winds in BHBs. In our models, the density at the base of the outflow
from the accretion disk is not a free parameter, but is determined by solving
the full set of dynamical MHD equations. Thus the physical properties of the
outflow are controlled by the global structure of the disk. We studied
different MHD solutions characterized by different values of (a) the disk
aspect ratio () and (b) the ejection efficiency (). We use two
kinds of MHD solutions depending on the absence (cold solution) or presence
(warm solution) of heating at the disk surface. Such heating could be from e.g.
dissipation of energy due to MHD turbulence in the disk or from illumination.
We use each of these MHD solutions to predict the physical parameters of an
outflow; put limits on the ionization parameter (), column density and
timescales, motivated by observational results; and thus select regions within
the outflow which are consistent with the observed winds. The cold MHD
solutions cannot account for winds due to their low ejection efficiency. But
warm solutions can explain the observed physical quantities in the wind because
they can have sufficiently high values of (, implying larger
mass loading at the base of the outflow). Further from our thermodynamic
equilibrium curve analysis for the outflowing gas, we found that in the Hard
state a range of is thermodynamically unstable, and had to be excluded.
This constrain made it impossible to have any wind at all, in the Hard state.Comment: 16 Pages, 10 figures in the main body and 4 figures in the appendix.
Accepted for publication in A&
Modeling Variable Emission Lines in AGNs: Method and Application to NGC 5548
We present a new scheme for modeling the broad line region in active galactic
nuclei (AGNs). It involves photoionization calculations of a large number of
clouds, in several pre-determined geometries, and a comparison of the
calculated line intensities with observed emission line light curves. Fitting
several observed light curves simultaneously provides strong constraints on
model parameters such as the run of density and column density across the
nucleus, the shape of the ionizing continuum, and the radial distribution of
the emission line clouds. When applying the model to the Seyfert 1 galaxy NGC
5548, we were able to reconstruct the light curves of four ultraviolet
emission-lines, in time and in absolute flux. This has not been achieved by any
previous work. We argue that the Balmer lines light curves, and possibly also
the MgII2798 light curve, cannot be tested in this scheme because of the
limitations of present-day photoionization codes. Our fit procedure can be used
to rule out models where the particle density scales as r^{-2}, where r is the
distance from the central source. The best models are those where the density
scales as r^{-1} or r^{-1.5}. We can place a lower limit on the column density
at a distance of 1 ld, of N_{col}(r=1) >~ 10^{23} cm^{-2} and limit the
particle density to be in the range of 10^{12.5}>N(r=1)>10^{11} cm^{-3}. We
have also tested the idea that the spectral energy distribution (SED) of the
ionizing continuum is changing with continuum luminosity. None of the
variable-shape SED tried resulted in real improvement over a constant SED case
although models with harder continuum during phases of higher luminosity seem
to fit better the observed spectrum. Reddening and/or different composition
seem to play a minor role, at least to the extent tested in this work.Comment: 12 pages, including 9 embedded EPS figures, accepted for publication
in Ap
A Rewriting Based Model for Probabilistic Distributed Object Systems
Concurrent and distributed systems have traditionally been modelled using nondeterministic transitions over configurations. The nondeterminism provides an abstraction over scheduling, network delays, failures and randomization. However a probabilistic model can capture these sources of nondeterminism more precisely and enable statistical analysis, simulations and reasoning. We have developed a general semantic framework for probabilistic systems using probabilistic rewriting. Our framework also allows nondeterminism in the system. In this paper, we briefly describe the framework and its application to concurrent object based systems such as actors. We also identify a su#ciently expressive fragment of the general framework and describe its implementation. The concepts are illustrated by a simple client-server example
Effects of legume cover crop and sub-soiling on soil properties and Maize (Zea mays L) growth in semi arid area of Machakos district, Kenya = Efecto del cultivo de cobertua y el subsolado sobre las propiedades del suelo y crecimiento de maiz (Zea mays L.) en la region semi arida de Machakos, Kenia
Low crop yields in the semi arid areas of Kenya have been attributed to, among other factors, low soil fertility, low farm inputs, labour constraints and inappropriate tillage practices that lead to pulverized soils. The aim of this study was to determine the effects of legume cover crops (LCC) on soil properties and maize growth in the semi arid area of Machakos District, Kenya. The study was undertaken in farmers’ fields. The field experiments were carried out in a RCBD with four treatments each replicated four times during the 2008 long (LR) and short rain (SR) seasons. The treatments were T1 = maize + dolichos (Lablab purpureus) + subsoiling; T2 = maize + dolichos + no subsoiling; T3 = maize alone + no subsoiling; T4 = maize alone with subsoiling). Results from the field experiments showed that rainfall amount and its distribution affected the growth and yield of dolichos and maize. There were significant differences in ground cover between the treatments at P = 0.05 in all the different weeks after planting when measurements were taken. The penetration resistance in all the plots ranged from 3.83 - 4.18 kg cm-2 with treatment T4 having the highest and treatment T1 lowest penetration resistance. There were also siginificant changes in soil N in plots which were under dolichos compared to plots without dolichos. The results obtained in this study also indicated that subsoiling in combination with dolichos had the greatest potential of improving soil properties and crop yields in semi arid environments of Kenya
Using the PALS Architecture to Verify a Distributed Topology Control Protocol for Wireless Multi-Hop Networks in the Presence of Node Failures
The PALS architecture reduces distributed, real-time asynchronous system
design to the design of a synchronous system under reasonable requirements.
Assuming logical synchrony leads to fewer system behaviors and provides a
conceptually simpler paradigm for engineering purposes. One of the current
limitations of the framework is that from a set of independent "synchronous
machines", one must compose the entire synchronous system by hand, which is
tedious and error-prone. We use Maude's meta-level to automatically generate a
synchronous composition from user-provided component machines and a description
of how the machines communicate with each other. We then use the new
capabilities to verify the correctness of a distributed topology control
protocol for wireless networks in the presence of nodes that may fail.Comment: In Proceedings RTRTS 2010, arXiv:1009.398
- …