2,655 research outputs found

    Maude: specification and programming in rewriting logic

    Get PDF
    Maude is a high-level language and a high-performance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both user-definable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and object-oriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude

    Towards the specification and verification of modal properties for structured systems

    Get PDF
    System specification formalisms should come with suitable property specification languages and effective verification tools. We sketch a framework for the verification of quantified temporal properties of systems with dynamically evolving structure. We consider visual specification formalisms like graph transformation systems (GTS) where program states are modelled as graphs, and the program behavior is specified by graph transformation rules. The state space of a GTS can be represented as a graph transition system (GTrS), i.e. a transition system with states and transitions labelled, respectively, with a graph, and with a partial morphism representing the evolution of state components. Unfortunately, GTrSs are prohibitively large or infinite even for simple systems, making verification intractable and hence calling for appropriate abstraction techniques

    Red Quasars and Quasar Evolution: the Case of BALQSO FIRST J155633.8+351758

    Get PDF
    We present the first near-IR spectroscopy of the z=1.5 radio-loud BALQSO FIRST J155633.8+351758. Both the Balmer decrement and the slope of the rest-frame UV-optical continuum independently suggest a modest amount of extinction along the line of sight to the BLR (E(B-V)~0.5 for SMC-type screen extinction at the QSO redshift). The implied gas column density along the line of sight is much less than is implied by the weak X-ray flux of the object, suggesting that either the BLR and BAL region have a low dust-to-gas ratio, or that the rest-frame optical light encounters significantly lower mean column density lines of sight than the X-ray emission. From the rest-frame UV-optical spectrum, we are able to constrain the stellar mass content of the system. Comparing the maximal stellar mass with the black hole mass estimated from the bolometric luminosity of the QSO, we find that the ratio of the black hole to stellar mass may be comparable to the Magorrian value, which would imply that the Magorrian relation is already in place at z=1.5. However, multiple factors favor a much larger black hole to stellar mass ratio. This would imply that if the Magorrian relation characterizes the late history of QSOs, and the situation observed for F1556+3517 is typical of the early evolutionary history of QSOs, central black hole masses develop more rapidly than bulge masses. [ABRIDGED]Comment: 23 pages, 4 embedded postscript figures; Accepted for publication in The Astronomical Journal, December 200

    Dust Emission from Active Galactic Nuclei

    Get PDF
    Unified schemes of active galactic nuclei (AGN) require an obscuring dusty torus around the central source, giving rise to Seyfert 1 line spectrum for pole-on viewing and Seyfert 2 characteristics in edge-on sources. Although the observed IR is in broad agreement with this scheme, the behavior of the 10 micron silicate feature and the width of the far-IR emission peak remained serious problems in all previous modeling efforts. We show that these problems find a natural explanation if the dust is contained in about 5-10 clouds along radial rays through the torus. The spectral energy distributions (SED) of both type 1 and type 2 sources are properly reproduced from different viewpoints of the same object if the visual optical depth of each cloud is larger than about 60 and the clouds' mean free path increases roughly in proportion to radial distance.Comment: 11 pages, submitted to ApJ Letter

    Absorption lines from magnetically-driven winds in X-ray binaries

    Full text link
    High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio (ε\varepsilon) and (b) the ejection efficiency (pp). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbulence in the disk or from illumination. We use each of these MHD solutions to predict the physical parameters of an outflow; put limits on the ionization parameter (ξ\xi), column density and timescales, motivated by observational results; and thus select regions within the outflow which are consistent with the observed winds. The cold MHD solutions cannot account for winds due to their low ejection efficiency. But warm solutions can explain the observed physical quantities in the wind because they can have sufficiently high values of pp (≳0.1\gtrsim 0.1, implying larger mass loading at the base of the outflow). Further from our thermodynamic equilibrium curve analysis for the outflowing gas, we found that in the Hard state a range of ξ\xi is thermodynamically unstable, and had to be excluded. This constrain made it impossible to have any wind at all, in the Hard state.Comment: 16 Pages, 10 figures in the main body and 4 figures in the appendix. Accepted for publication in A&

    Modeling Variable Emission Lines in AGNs: Method and Application to NGC 5548

    Get PDF
    We present a new scheme for modeling the broad line region in active galactic nuclei (AGNs). It involves photoionization calculations of a large number of clouds, in several pre-determined geometries, and a comparison of the calculated line intensities with observed emission line light curves. Fitting several observed light curves simultaneously provides strong constraints on model parameters such as the run of density and column density across the nucleus, the shape of the ionizing continuum, and the radial distribution of the emission line clouds. When applying the model to the Seyfert 1 galaxy NGC 5548, we were able to reconstruct the light curves of four ultraviolet emission-lines, in time and in absolute flux. This has not been achieved by any previous work. We argue that the Balmer lines light curves, and possibly also the MgII2798 light curve, cannot be tested in this scheme because of the limitations of present-day photoionization codes. Our fit procedure can be used to rule out models where the particle density scales as r^{-2}, where r is the distance from the central source. The best models are those where the density scales as r^{-1} or r^{-1.5}. We can place a lower limit on the column density at a distance of 1 ld, of N_{col}(r=1) >~ 10^{23} cm^{-2} and limit the particle density to be in the range of 10^{12.5}>N(r=1)>10^{11} cm^{-3}. We have also tested the idea that the spectral energy distribution (SED) of the ionizing continuum is changing with continuum luminosity. None of the variable-shape SED tried resulted in real improvement over a constant SED case although models with harder continuum during phases of higher luminosity seem to fit better the observed spectrum. Reddening and/or different composition seem to play a minor role, at least to the extent tested in this work.Comment: 12 pages, including 9 embedded EPS figures, accepted for publication in Ap

    A Rewriting Based Model for Probabilistic Distributed Object Systems

    Full text link
    Concurrent and distributed systems have traditionally been modelled using nondeterministic transitions over configurations. The nondeterminism provides an abstraction over scheduling, network delays, failures and randomization. However a probabilistic model can capture these sources of nondeterminism more precisely and enable statistical analysis, simulations and reasoning. We have developed a general semantic framework for probabilistic systems using probabilistic rewriting. Our framework also allows nondeterminism in the system. In this paper, we briefly describe the framework and its application to concurrent object based systems such as actors. We also identify a su#ciently expressive fragment of the general framework and describe its implementation. The concepts are illustrated by a simple client-server example

    Effects of legume cover crop and sub-soiling on soil properties and Maize (Zea mays L) growth in semi arid area of Machakos district, Kenya = Efecto del cultivo de cobertua y el subsolado sobre las propiedades del suelo y crecimiento de maiz (Zea mays L.) en la region semi arida de Machakos, Kenia

    Get PDF
    Low crop yields in the semi arid areas of Kenya have been attributed to, among other factors, low soil fertility, low farm inputs, labour constraints and inappropriate tillage practices that lead to pulverized soils. The aim of this study was to determine the effects of legume cover crops (LCC) on soil properties and maize growth in the semi arid area of Machakos District, Kenya. The study was undertaken in farmers’ fields. The field experiments were carried out in a RCBD with four treatments each replicated four times during the 2008 long (LR) and short rain (SR) seasons. The treatments were T1 = maize + dolichos (Lablab purpureus) + subsoiling; T2 = maize + dolichos + no subsoiling; T3 = maize alone + no subsoiling; T4 = maize alone with subsoiling). Results from the field experiments showed that rainfall amount and its distribution affected the growth and yield of dolichos and maize. There were significant differences in ground cover between the treatments at P = 0.05 in all the different weeks after planting when measurements were taken. The penetration resistance in all the plots ranged from 3.83 - 4.18 kg cm-2 with treatment T4 having the highest and treatment T1 lowest penetration resistance. There were also siginificant changes in soil N in plots which were under dolichos compared to plots without dolichos. The results obtained in this study also indicated that subsoiling in combination with dolichos had the greatest potential of improving soil properties and crop yields in semi arid environments of Kenya

    Using the PALS Architecture to Verify a Distributed Topology Control Protocol for Wireless Multi-Hop Networks in the Presence of Node Failures

    Full text link
    The PALS architecture reduces distributed, real-time asynchronous system design to the design of a synchronous system under reasonable requirements. Assuming logical synchrony leads to fewer system behaviors and provides a conceptually simpler paradigm for engineering purposes. One of the current limitations of the framework is that from a set of independent "synchronous machines", one must compose the entire synchronous system by hand, which is tedious and error-prone. We use Maude's meta-level to automatically generate a synchronous composition from user-provided component machines and a description of how the machines communicate with each other. We then use the new capabilities to verify the correctness of a distributed topology control protocol for wireless networks in the presence of nodes that may fail.Comment: In Proceedings RTRTS 2010, arXiv:1009.398
    • …
    corecore