33 research outputs found

    Transcriptional and Translational Regulatory Responses to Iron Limitation in the Globally Distributed Marine Bacterium Candidatus Pelagibacter ubique

    Get PDF
    Iron is recognized as an important micronutrient that limits microbial plankton productivity over vast regions of the oceans. We investigated the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation in natural seawater media supplemented with a siderophore to chelate iron. Microarray data indicated transcription of the periplasmic iron binding protein sfuC increased by 16-fold, and iron transporter subunits, iron-sulfur center assembly genes, and the putative ferroxidase rubrerythrin transcripts increased to a lesser extent. Quantitative peptide mass spectrometry revealed that sfuC protein abundance increased 27-fold, despite an average decrease of 59% across the global proteome. Thus, we propose sfuC as a marker gene for indicating iron limitation in marine metatranscriptomic and metaproteomic ecological surveys. The marked proteome reduction was not directly correlated to changes in the transcriptome, implicating post-transcriptional regulatory mechanisms as modulators of protein expression. Two RNA-binding proteins, CspE and CspL, correlated well with iron availability, suggesting that they may contribute to the observed differences between the transcriptome and proteome. We propose a model in which the RNA-binding activity of CspE and CspL selectively enables protein synthesis of the iron acquisition protein SfuC during transient growth-limiting episodes of iron scarcity

    Distinct Cerebrospinal Fluid Proteomes Differentiate Post-Treatment Lyme Disease from Chronic Fatigue Syndrome

    Get PDF
    Neurologic Post Treatment Lyme disease (nPTLS) and Chronic Fatigue (CFS) are syndromes of unknown etiology. They share features of fatigue and cognitive dysfunction, making it difficult to differentiate them. Unresolved is whether nPTLS is a subset of CFS. Methods and Principal Findings: Pooled cerebrospinal fluid (CSF) samples from nPTLS patients, CFS patients, and healthy volunteers were comprehensively analyzed using high-resolution mass spectrometry (MS), coupled with immunoaffinity depletion methods to reduce protein-masking by abundant proteins. Individual patient and healthy control CSF samples were analyzed directly employing a MS-based label-free quantitative proteomics approach. We found that both groups, and individuals within the groups, could be distinguished from each other and normals based on their specific CSF proteins (p&0.01). CFS (n = 43) had 2,783 non-redundant proteins, nPTLS (n = 25) contained 2,768 proteins, and healthy normals had 2,630 proteins. Preliminary pathway analysis demonstrated that the data could be useful for hypothesis generation on the pathogenetic mechanisms underlying these two related syndromes. Conclusions: nPTLS and CFS have distinguishing CSF protein complements. Each condition has a number of CSF proteins that can be useful in providing candidates for future validation studies and insights on the respective mechanisms of pathogenesis. Distinguishing nPTLS and CFS permits more focused study of each condition, and can lead to novel diagnostics and therapeutic interventions

    A comprehensive collection of systems biology data characterizing the host response to viral infection

    Get PDF
    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection

    High-Fat Diets Alter the Modulatory Effects of Xenobiotics on Cytochrome P450 Activities

    No full text
    Cytochrome P450 monooxygenase (P450) enzymes metabolize critical endogenous chemicals and oxidize nearly all xenobiotics. Dysregulated P450 activities lead to altered capacity for drug metabolism and cellular stress. The effects of mixed exposures on P450 expression and activity are variable and elusive. A high-fat diet (HFD) is a common exposure that results in obesity and associated pathologies including hepatotoxicity. Herein, we report the effects of cigarette smoke on P450 activities of normal weight and HFD induced obese mice. Activity-based protein profiling results indicate that HFD mice had significantly decreased P450 activity, likely instigated by proinflammatory chemicals, and that P450 enzymes involved in detoxification, xenobiotic metabolism, and bile acid synthesis were effected by HFD and smoke interaction. Smoking increased activity of all lung P450 and coexposure to diet effected P450 2s1. We need to expand our understanding of common exposures coupled to altered P450 metabolism to enhance the safety and efficacy of therapeutic drug dosing

    Effects of delayed NSAID administration after experimental eccentric contraction injury - A cellular and proteomics study.

    No full text
    BACKGROUND:Acute muscle injuries are exceedingly common and non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed to reduce the associated inflammation, swelling and pain that peak 1-2 days post-injury. While prophylactic use or early administration of NSAIDs has been shown to delay muscle regeneration and contribute to loss of muscle strength after healing, little is known about the effects of delayed NSAID use. Further, NSAID use following non-penetrating injury has been associated with increased risk and severity of infection, including that due to group A streptococcus, though the mechanisms remain to be elucidated. The present study investigated the effects of delayed NSAID administration on muscle repair and sought mechanisms supporting an injury/NSAID/infection axis. METHODS:A murine model of eccentric contraction (EC)-induced injury of the tibialis anterior muscle was used to profile the cellular and molecular changes induced by ketorolac tromethamine administered 47 hr post injury. RESULTS:NSAID administration inhibited several important muscle regeneration processes and down-regulated multiple cytoprotective proteins known to inhibit the intrinsic pathway of programmed cell death. These activities were associated with increased caspase activity in injured muscles but were independent of any NSAID effect on macrophage influx or phenotype switching. CONCLUSIONS:These findings provide new molecular evidence supporting the notion that NSAIDs have a direct negative influence on muscle repair after acute strain injury in mice and thus add to renewed concern about the safety and benefits of NSAIDS in both children and adults, in those with progressive loss of muscle mass such as the elderly or patients with cancer or AIDS, and those at risk of secondary infection after trauma or surgery

    Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum

    No full text
    Root hairs are single hair-forming cells on roots that function to increase root surface area, enhancing water and nutrient uptake. In leguminous plants, root hairs also play a critical role as the site of infection by symbiotic nitrogen fixing rhizobia, leading to the formation of a novel organ, the nodule. The initial steps in the rhizobia-root hair infection process are known to involve specific receptor kinases and subsequent kinase cascades. Here, we characterize the phosphoproteome of the root hairs and the corresponding stripped roots ( i.e. roots from which root hairs were removed) during rhizobial colonization and infection to gain insight into the molecular mechanism of root hair cell biology. We chose soybean ( Glycine max L .), one of the most important crop plants in the legume family, for this study because of its larger root size, which permits isolation of sufficient root hair material for phosphoproteomic analysis. Phosphopeptides derived from root hairs and stripped roots, mock inoculated or inoculated with the soybean-specific rhizobium Bradyrhizobium japonicum , were labeled with the isobaric tag eight-plex iTRAQ, enriched using Ni-NTA magnetic beads and subjected to nanoRPLC-MS/MS 1 analysis using HCD and decision tree guided CID/ETD strategy. A total of 1625 unique phosphopeptides, spanning 1659 nonredundant phosphorylation sites, were detected from 1126 soybean phosphoproteins. Among them, 273 phosphopeptides corresponding to 240 phosphoproteins were found to be significantly regulated (>1.5-fold abundance change) in response to inoculation with B. japonicum . The data reveal unique features of the soybean root hair phosphoproteome, including root hair and stripped root-specific phosphorylation suggesting a complex network of kinase-substrate and phosphatase-substrate interactions in response to rhizobial inoculation
    corecore