826 research outputs found
Weight, volume, and center of mass of segments of the human body
Weight, volume, and center of mass of segments of human bod
Is Quantum Mechanics Compatible with a Deterministic Universe? Two Interpretations of Quantum Probabilities
Two problems will be considered: the question of hidden parameters and the
problem of Kolmogorovity of quantum probabilities. Both of them will be
analyzed from the point of view of two distinct understandings of quantum
mechanical probabilities. Our analysis will be focused, as a particular
example, on the Aspect-type EPR experiment. It will be shown that the quantum
mechanical probabilities appearing in this experiment can be consistently
understood as conditional probabilities without any paradoxical consequences.
Therefore, nothing implies in the Aspect experiment that quantum theory is
incompatible with a deterministic universe.Comment: REVISED VERSION! ONLY SMALL CHANGES IN THE TEXT! compressed and
uuencoded postscript, a uuencoded version of a demo program file (epr.exe for
DOS) is attached as a "Figure
Quantum Holography
We propose to make use of quantum entanglement for extracting holographic
information about a remote 3-D object in a confined space which light enters,
but from which it cannot escape. Light scattered from the object is detected in
this confined space entirely without the benefit of spatial resolution. Quantum
holography offers this possibility by virtue of the fourth-order quantum
coherence inherent in entangled beams.Comment: 7 pages, submitted to Optics Expres
MGP versus Kochen-Specker condition in hidden variables theories
Hidden variables theories for quantum mechanics are usually assumed to
satisfy the KS condition. The Bell-Kochen-Specker theorem then shows that these
theories are necessarily contextual. But the KS condition can be criticized
from an operational viewpoint, which suggests that a weaker condition (MGP)
should be adopted in place of it. This leads one to introduce a class of hidden
parameters theories in which contextuality can, in principle, be avoided, since
the proofs of the Bell-Kochen-Specker theorem break down. A simple model
recently provided by the author for an objective interpretation of quantum
mechanics can be looked at as a noncontextual hidden parameters theory, which
shows that such theories actually exist.Comment: 10 pages, new updated footnotes and quotation
Quantum entanglement and Bell violation of two coupled cavity fields in dissipative environment
We study the quantum entanglement between two coupled cavities, in which one
is initially prepared in a mesoscopic superposition state and the other is in
the vacuum in dissipative environment and show how the entanglement between two
cavities can arise in the dissipative environment. The dynamic behavior of the
nonlocality for the system is also investigated.Comment: 12 pages, 5 figure
How much contextuality?
The amount of contextuality is quantified in terms of the probability of the
necessary violations of noncontextual assignments to counterfactual elements of
physical reality.Comment: 5 pages, 3 figure
An experimental test of non-local realism
Most working scientists hold fast to the concept of 'realism' - a viewpoint
according to which an external reality exists independent of observation. But
quantum physics has shattered some of our cornerstone beliefs. According to
Bell's theorem, any theory that is based on the joint assumption of realism and
locality (meaning that local events cannot be affected by actions in space-like
separated regions) is at variance with certain quantum predictions. Experiments
with entangled pairs of particles have amply confirmed these quantum
predictions, thus rendering local realistic theories untenable. Maintaining
realism as a fundamental concept would therefore necessitate the introduction
of 'spooky' actions that defy locality. Here we show by both theory and
experiment that a broad and rather reasonable class of such non-local realistic
theories is incompatible with experimentally observable quantum correlations.
In the experiment, we measure previously untested correlations between two
entangled photons, and show that these correlations violate an inequality
proposed by Leggett for non-local realistic theories. Our result suggests that
giving up the concept of locality is not sufficient to be consistent with
quantum experiments, unless certain intuitive features of realism are
abandoned.Comment: Minor corrections to the manuscript, the final inequality and all its
conclusions do not change; description of corrections (Corrigendum) added as
new Appendix III; Appendix II replaced by a shorter derivatio
Violation of Bell inequalities by photons more than 10 km apart
A Franson-type test of Bell inequalities by photons 10.9 km apart is
presented. Energy-time entangled photon-pairs are measured using two-channel
analyzers, leading to a violation of the inequalities by 16 standard deviations
without subtracting accidental coincidences. Subtracting them, a 2-photon
interference visibility of 95.5% is observed, demonstrating that distances up
to 10 km have no significant effect on entanglement. This sets quantum
cryptography with photon pairs as a practical competitor to the schemes based
on weak pulses.Comment: 4 pages, REVTeX, 2 postscript figures include
Theory of decoherence in a matter wave Talbot-Lau interferometer
We present a theoretical framework to describe the effects of decoherence on
matter waves in Talbot-Lau interferometry. Using a Wigner description of the
stationary beam the loss of interference contrast can be calculated in closed
form. The formulation includes both the decohering coupling to the environment
and the coherent interaction with the grating walls. It facilitates the
quantitative distinction of genuine quantum interference from the expectations
of classical mechanics. We provide realistic microscopic descriptions of the
experimentally relevant interactions in terms of the bulk properties of the
particles and show that the treatment is equivalent to solving the
corresponding master equation in paraxial approximation.Comment: 20 pages, 4 figures (minor corrections; now in two-column format
Entanglement swapping using continuous variables
We investigate the efficacy with which entanglement can be teleported using a
continuous measurement scheme. We show that by using the correct gain for the
classical channel the degree of violation of locality that can be demonstrated
(using a CH type inequality) is {\it not} a function of the level of
entanglement squeezing used in the teleportation. This is possible because a
gain condition can always be choosen such that passage through the teleporter
is equivalent to pure attenuation of the input field.Comment: 8 pages, 4 figure
- …
