51 research outputs found

    Common variants in the CLDN2-MORC4 and PRSS1-PRSS2 loci confer susceptibility to acute pancreatitis

    Get PDF
    BACKGROUND/OBJECTIVES: Acute pancreatitis (AP) is one of the most common gastrointestinal disorders often requiring hospitalization. Frequent aetiologies are gallstones and alcohol abuse. In contrast to chronic pancreatitis (CP) few robust genetic associations have been described. Here we analysed whether common variants in the CLDN2-MORC4 and the PRSS1-PRSS2 locus that increase recurrent AP and CP risk associate with AP. METHODS: We screened 1462 AP patients and 3999 controls with melting curve analysis for SNPs rs10273639 (PRSS1-PRSS2), rs7057398 (RIPPLY), and rs12688220 (MORC4). Calculations were performed for the overall group, aetiology, and gender sub-groups. To examine genotype-phenotype relationships we performed several meta-analyses. RESULTS: Meta-analyses of all AP patients depicted significant (p-value<0.05) associations for rs10273639 (odds ratio (OR) 0.88, 95% confidence interval (CI) 0.81-0.97, p-value 0.01), rs7057398 (OR 1.27, 95% CI 1.07-1.5, p-value 0.005), and rs12688220 (OR 1.32, 95% CI 1.12-1.56, p-value 0.001). For the different aetiology groups a significant association was shown for rs10273639 (OR 0.76, 95% CI 0.63-0.92, p-value 0.005), rs7057398 (OR 1.43, 95% CI 1.07-1.92, p-value 0.02), and rs12688220 (OR 1.44, 95% CI 1.07-1.93, p-value 0.02) in the alcoholic sub-group only. CONCLUSIONS: The association of CP risk variants with different AP aetiologies, which is strongest in the alcoholic AP group, might implicate common pathomechanisms most likely between alcoholic AP and CP

    Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis

    Get PDF
    OBJECTIVE: Alcohol-related pancreatitis is associated with a disproportionately large number of hospitalisations among GI disorders. Despite its clinical importance, genetic susceptibility to alcoholic chronic pancreatitis (CP) is poorly characterised. To identify risk genes for alcoholic CP and to evaluate their relevance in non-alcoholic CP, we performed a genome-wide association study and functional characterisation of a new pancreatitis locus. DESIGN: 1959 European alcoholic CP patients and population-based controls from the KORA, LIFE and INCIPE studies (n=4708) as well as chronic alcoholics from the GESGA consortium (n=1332) were screened with Illumina technology. For replication, three European cohorts comprising 1650 patients with non-alcoholic CP and 6695 controls originating from the same countries were used. RESULTS: We replicated previously reported risk loci CLDN2-MORC4, CTRC, PRSS1-PRSS2 and SPINK1 in alcoholic CP patients. We identified CTRB1-CTRB2 (chymotrypsin B1 and B2) as a new risk locus with lead single-nucleotide polymorphism (SNP) rs8055167 (OR 1.35, 95% CI 1.23 to 1.6). We found that a 16.6 kb inversion in the CTRB1-CTRB2 locus was in linkage disequilibrium with the CP-associated SNPs and was best tagged by rs8048956. The association was replicated in three independent European non-alcoholic CP cohorts of 1650 patients and 6695 controls (OR 1.62, 95% CI 1.42 to 1.86). The inversion changes the expression ratio of the CTRB1 and CTRB2 isoforms and thereby affects protective trypsinogen degradation and ultimately pancreatitis risk. CONCLUSION: An inversion in the CTRB1-CTRB2 locus modifies risk for alcoholic and non-alcoholic CP indicating that common pathomechanisms are involved in these inflammatory disorders

    Genetic Analyses of Heme Oxygenase 1 (HMOX1) in Different Forms of Pancreatitis

    Get PDF
    Contains fulltext : 107993.pdf (publisher's version ) (Open Access)BACKGROUND: Heme oxygenase 1 (HMOX1) is the rate limiting enzyme in heme degradation and a key regulator of inflammatory processes. In animal models the course of pancreatitis was ameliorated by up-regulation of HMOX1 expression. Additionally, carbon monoxide released during heme breakdown inhibited proliferation of pancreatic stellate cells and might thereby prevent the development of chronic pancreatitis (CP). Transcription of HMOX1 in humans is influenced by a GT-repeat located in the promoter. As such, HMOX1 variants might be of importance in the pathogenesis of pancreatitis. METHODS: The GT-repeat and SNP rs2071746 were investigated with fluorescence labelled primers and by melting curve analysis in 285 patients with acute pancreatitis, 208 patients with alcoholic CP, 207 patients with idiopathic/hereditary CP, 147 patients with alcoholic liver cirrhosis, and in 289 controls, respectively. GT-repeat analysis was extended to a total of 446 alcoholic CP patients. In addition, we performed DNA sequencing in 145 patients with alcoholic CP, 138 patients with idiopathic/hereditary CP, 147 patients with alcoholic liver cirrhosis, and 151 controls. Exon 3 screening was extended to additional patients and controls. RESULTS: S- and L-alleles of the GT-repeat, genotypes and alleles of SNP rs2071746 and non-synonymous variants detected by sequencing were found with similar frequencies in all groups. CONCLUSIONS: Although functional data implicate a potential influence of HMOX1 variants on the pathogenesis of pancreatitis, we did not find any association. As rare non-synonymous HMOX1 variants were found in patients and controls, it is rather unlikely that they will have functional consequences essential for pancreatitis development

    A Common Variant of PNPLA3 (p.I148M) Is Not Associated with Alcoholic Chronic Pancreatitis

    Get PDF
    Contains fulltext : 110441.pdf (publisher's version ) (Open Access)BACKGROUND: Chronic pancreatitis (CP) is an inflammatory disease that in some patients leads to exocrine and endocrine dysfunction. In industrialized countries the most common aetiology is chronic alcohol abuse. Descriptions of associated genetic alterations in alcoholic CP are rare. However, a common PNPLA3 variant (p.I148M) is associated with the development of alcoholic liver cirrhosis (ALC). Since, alcoholic CP and ALC share the same aetiology PNPLA3 variant (p.I148M) possibly influences the development of alcoholic CP. METHODS: Using melting curve analysis we genotyped the variant in 1510 patients with pancreatitis or liver disease (961 German and Dutch alcoholic CP patients, 414 German patients with idiopathic or hereditary CP, and 135 patients with ALC). In addition, we included in total 2781 healthy controls in the study. RESULTS: The previously published overrepresentation of GG-genotype was replicated in our cohort of ALC (p-value <0.0001, OR 2.3, 95% CI 1.6-3.3). Distributions of genotype and allele frequencies of the p.I148M variant were comparable in patients with alcoholic CP, idiopathic and hereditary CP and in healthy controls. CONCLUSIONS: The absence of an association of PNPLA3 p.I148M with alcoholic CP seems not to point to a common pathway in the development of alcoholic CP and alcoholic liver cirrhosis

    Interaction between somatostatin analogues and targeted therapies in neuroendocrine tumor cells.

    No full text
    Somatostatin analogues (SSA) represent the standard of care for symptom control in patients with functional gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). In addition, SSA exert significant anti-proliferative effects in mid-gut and pancreatic NET (PanNET). In parallel, molecularly targeted therapies (MTT) have been shown to improve progression free survival (PFS) in patients with PanNET. However, due to either primary or acquired resistance to MTT, their impact on overall survival (OS) remains unclear. To date, various hypotheses exist to explain differences in patient responsiveness to SSA and MTT. However, data addressing one of the most pivotal questions, whether combining SSA with novel MTT will result in synergistic or additive efficacy compared to monotherapy, are lacking. The aim of this study is to characterize the interaction, optimal sequence and dosing of SSA-based and molecularly targeted therapies in PanNET. Somatostatin receptor subtypes 1-5 (SSTR) were evaluated in the neuroendocrine cell lines Bon1, QGP1 and Ins-1 via immunoblot and qRT-PCR. The impact of the SSA-analogue lanreotide alone or in combination with the MTT sunitinib, everolimus and regorafenib on intracellular signalling, hormone secretion and cell proliferation was determined in cell lysates and supernatants. In addition, synergistic effects of SSA and MTT in various sequential therapeutic approaches were investigated. SSTR were differently expressed in the examined neuroendocrine tumor cell lines. SSTR modulation via lanreotide moderately influenced proliferation, mainly via modulating AKT and ERK signalling, which was paralleled by decreased chromogranin A (CgA) expression and secretion. Interestingly, MTT treatment with regorafenib upregulated the expression of SSTR-2 and -5, while sunitinib and everolimus did not significantly alter SSTR expression. Cell viability was significantly reduced by all MTT, with regorafenib exerting the most significant effects. However, compared to the marked effects of MTT alone, synergistic effects of combined MTT and lanreotide treatment were only modest and time- and dose-dependent. SSTR are differentially expressed in various NEN cell lines. Their expression is influenced by MTT treatment. Various sequential or simultaneous combinations of lanreotide and MTT did not lead to significant synergistic effects

    Common variants in glyoxalase I do not increase chronic pancreatitis risk

    Get PDF
    Chronic pancreatitis (CP) may be caused by oxidative stress. An important source of reactive oxygen species (ROS) is the methylglyoxal-derived formation of advanced glycation endproducts (AGE). Methylglyoxal is detoxified by Glyoxalase I (GLO1). A reduction in GLO1 activity results in increased ROS. Single nucleotide polymorphisms (SNPs) of GLO1 have been linked to various inflammatory diseases. Here, we analyzed whether common GLO1 variants are associated with alcoholic (ACP) and non-alcoholic CP (NACP).Using melting curve analysis, we genotyped a screening cohort of 223 ACP, 218 NACP patients, and 328 controls for 11 tagging SNPs defined by the SNPinfo LD TAG SNP Selection tool and the functionally relevant variant rs4746. For selected variants the cohorts were extended to up to 1,441 patient samples.In the ACP cohort, comparison of genotypes for rs1937780 between patients and controls displayed an ambiguous result in the screening cohort (p = 0.08). However, in the extended cohort of 1,441 patients no statistically significant association was found for the comparison of genotypes (p = 0.11), nor in logistic regression analysis (p = 0.214, OR 1.072, 95% CI 0.961-1.196). In the NACP screening cohort SNPs rs937662, rs1699012, and rs4746 displayed an ambiguous result when patients were compared to controls in the recessive or dominant model (p = 0.08, 0.08, and 0.07, respectively). Again, these associations were not confirmed in the extended cohorts (rs937662, dominant model: p = 0.07, logistic regression: p = 0.07, OR 1.207, 95% CI 0.985-1.480) or in the replication cohorts for rs4746 (Germany, p = 0.42, OR 1.080, 95% CI 0.673-1.124; France, p = 0.19, OR 0.90, 95% CI 0.76-1.06; China, p = 0.24, OR 1.18, 95% CI 0.90-1.54) and rs1699012 (Germany, Munich; p = 0.279, OR 0.903, 95% CI 0.750-1.087).Common GLO1 variants do not increase chronic pancreatitis risk

    Analysis of GPRC6A variants in different pancreatitis etiologies

    Get PDF
    The G-protein-coupled receptor Class C Group 6 Member A (GPRC6A) is activated by multiple ligands and is important for the regulation of calcium homeostasis. Extracellular calcium is capable to increase NLRP3 inflammasome activity of the innate immune system and deletion of this proinflammatory pathway mitigated pancreatitis severity in vivo. As such this pathway and the GPRC6A receptor is a reasonable candidate gene for pancreatitis. Here we investigated the prevalence of sequence variants in the GPRC6A locus in different pancreatitis aetiologies.We selected 6 tagging SNPs with the SNPinfo LD TAG SNP Selection tool and the functional relevant SNP rs6907580 for genotyping. Cohorts from Germany, further European countries and China with up to 1,124 patients and 1,999 controls were screened for single SNPs with melting curve analysis.We identified an association of rs1606365(G) with alcoholic chronic pancreatitis in a German (odds ratio (OR) 0.76, 95% confidence interval (CI) 0.65-0.89, p = 8 × 10-5) and a Chinese cohort (OR 0.78, 95% CI 0.64-0.96, p = 0.02). However, this association was not replicated in a combined cohort of European patients (OR 1.18, 95% CI 0.99-1.41, p = 0.07). Finally, no association was found with acute and non-alcoholic chronic pancreatitis.Our results support a potential role of calcium sensing receptors and inflammasome activation in alcoholic chronic pancreatitis development. As the functional consequence of the associated variant is unclear, further investigations might elucidate the relevant mechanisms

    Genetic susceptibility to hepatoxicity due to bosentan treatment in pulmonary hypertension

    No full text
    Background. Hepatotoxicity is a major side effect of treatment with bosentan in patients with pulmonary hypertension (PH). Bosentan is metabolized by the cytochrome CYP2C9 and inhibits the bile salt export pump, which is encoded by ABCB11. This suggests that genetic variants of CYP2C9 and/or ABCB11 may predispose patients to bosentan-induced liver injury.Material and methods. PH patients with (n = 23) or Without (n = 25) an increase of alanine-aminotransferase (ALT) or aspartate-aminotransferase (AST) during bosentan therapy were included in our analysis. Functionally relevant alleles of CYP2C9 and 16 representative variants of ABCB11 were genotyped. Data were analyzed using logistic regression.Results. Variants of ABCB11 were not associated with bosentan-induced liver injury. In contrast, variant alleles of CYP2C9 were more common in patients with elevated transaminases (allele frequency 52%) compared to controls (allele frequency 24%, P = 0.04, odds ratio 3.5, 95% confidence interval 1.01-11.8).Conclusion. Our data indicate hepatotoxicity of bosentan from decreased hepatic metabolism due to common variants of CYP2C9
    corecore