437 research outputs found

    Seedling Establishment of Tall Fescue Exposed to Long-Term Starvation Stress

    Get PDF
    In germinating seeds under unfavorable environmental conditions, the mobilization of stores in the cotyledons is delayed, which may result in a different modulation of carbohydrates balance and a decrease in seedling vigor. Tall fescue (Festuca arundinacea Schreb.) caryopses grown at 4ËšC in the dark for an extended period in complete absence of nutrients, showed an unexpected ability to survive. Seedlings grown at 4ËšC for 210 days were morphologically identical to seedlings grown at 23ËšC for 21 days. After 400 days, seedlings grown at 4ËšC were able to differentiate plastids to chloroplast in just few days once transferred to the light and 23ËšC. Tall fescue exposed to prolonged period at 4ËšC showed marked anatomical changes: cell wall thickening, undifferentiated plastids, more root hairs and less xylem lignification. Physiological modifications were also observed, in particular related to sugar content, GA and ABA levels and amylolytic enzymes pattern. The phytohormones profiles exhibited at 4 and 23ËšC were comparable when normalized to the respective physiological states. Both the onset and the completion of germination were linked to GA and ABA levels, as well as to the ratio between these two hormones. All plants showed a sharp decline in carbohydrate content, with a consequent onset of gradual sugar starvation. This explained the slowed then full arrest in growth under both treatment regimes. The analysis of amylolytic activity showed that Ca2+ played a central role in the stabilization of several isoforms. Overall, convergence of starvation and hormone signals meet in crosstalk to regulate germination, growth and development in tall fescue

    Too much tolerance for hyperoxemia in mechanically ventilated patients with SARS-CoV-2 pneumonia? Report from an Italian intensive care unit

    Get PDF
    Background: In COVID-19 patients requiring mechanical ventilation, the administration of high oxygen (O2) doses for prolonged time periods may be necessary. Although life-saving in most cases, O2 may exert deleterious effects if administered in excessive concentrations. We aimed to describe the prevalence of hyperoxemia and excessive O2 administration in mechanically ventilated patients with SARS-CoV-2 pneumonia and determine whether hyperoxemia is associated with mortality in the Intensive Care Unit (ICU) or the onset of ventilator-associated pneumonia (VAP). Materials and methods: Retrospective single-center study on adult patients with SARS-CoV-2 pneumonia requiring invasive mechanical ventilation for ≥48 h. Patients undergoing extracorporeal respiratory support were excluded. We calculated the excess O2 administered based on the ideal arterial O2 tension (PaO2) target of 55–80 mmHg. We defined hyperoxemia as PaO2 > 100 mmHg and hyperoxia + hyperoxemia as an inspired O2 fraction (FiO2) > 60% + PaO2 > 100 mmHg. Risk factors for ICU-mortality and VAP were assessed through multivariate analyses. Results: One hundred thirty-four patients were included. For each day of mechanical ventilation, each patient received a median excess O2 of 1,121 [829–1,449] L. Hyperoxemia was found in 38 [27–55]% of arterial blood gases, hyperoxia + hyperoxemia in 11 [5–18]% of cases. The FiO2 was not reduced in 69 [62–76]% of cases of hyperoxemia. Adjustments were made more frequently with higher PaO2 or initial FiO2 levels. ICU-mortality was 32%. VAP was diagnosed in 48.5% of patients. Hyperoxemia (OR 1.300 95% CI [1.097–1.542]), time of exposure to hyperoxemia (OR 2.758 [1.406–5.411]), hyperoxia + hyperoxemia (OR 1.144 [1.008–1.298]), and daily excess O2 (OR 1.003 [1.001–1.005]) were associated with higher risk for ICU-mortality, independently of age, Sequential Organ failure Assessment score at ICU-admission and mean PaO2/FiO2. Hyperoxemia (OR 1.033 [1.006–1.061]), time of exposure to hyperoxemia (OR 1.108 [1.018–1.206]), hyperoxia + hyperoxemia (OR 1.038 [1.003–1.075]), and daily excess O2 (OR 1.001 [1.000–1.001]) were identified as risk factors for VAP, independently of body mass index, blood transfusions, days of neuromuscular blocking agents (before VAP), prolonged prone positioning and mean PaO2/FiO2 before VAP. Conclusion: Excess O2 administration and hyperoxemia were common in mechanically ventilated patients with SARS-CoV-2 pneumonia. The exposure to hyperoxemia may be associated with ICU-mortality and greater risk for VAP

    Near-infrared spectroscopy for assessing tissue oxygenation and microvascular reactivity in critically ill patients: a prospective observational study

    Get PDF
    Impaired microcirculatory perfusion and tissue oxygenation during critical illness are associated with adverse outcome. The aim of this study was to detect alterations in tissue oxygenation or microvascular reactivity and their ability to predict outcome in critically ill patients using thenar near-infrared spectroscopy (NIRS) with a vascular occlusion test (VOT)

    Effects of short-term hyperoxia on erythropoietin levels and microcirculation in critically Ill patients: a prospective observational pilot study

    Get PDF
    BACKGROUND: The normobaric oxygen paradox states that a short exposure to normobaric hyperoxia followed by rapid return to normoxia creates a condition of 'relative hypoxia' which stimulates erythropoietin (EPO) production. Alterations in glutathione and reactive oxygen species (ROS) may be involved in this process. We tested the effects of short-term hyperoxia on EPO levels and the microcirculation in critically ill patients.METHODS: In this prospective, observational study, 20 hemodynamically stable, mechanically ventilated patients with inspired oxygen concentration (FiO2) \ue2\u89\ua40.5 and PaO2/FiO2\ue2\u80\u89\ue2\u89\ua5\ue2\u80\u89200\uc2\ua0mmHg underwent a 2-hour exposure to hyperoxia (FiO2 1.0). A further 20 patients acted as controls. Serum EPO was measured at baseline, 24\uc2\ua0h and 48\uc2\ua0h. Serum glutathione (antioxidant) and ROS levels were assessed at baseline (t0), after 2\uc2\ua0h of hyperoxia (t1) and 2\uc2\ua0h after returning to their baseline FiO2 (t2). The microvascular response to hyperoxia was assessed using sublingual sidestream dark field videomicroscopy and thenar near-infrared spectroscopy with a vascular occlusion test.RESULTS: EPO increased within 48\uc2\ua0h in patients exposed to hyperoxia from 16.1 [7.4-20.2] to 22.9 [14.1-37.2] IU/L (p\ue2\u80\u89=\ue2\u80\u890.022). Serum ROS transiently increased at t1, and glutathione increased at t2. Early reductions in microvascular density and perfusion were seen during hyperoxia (perfused small vessel density: 85% [95% confidence interval 79-90] of baseline). The response after 2\uc2\ua0h of hyperoxia exposure was heterogeneous. Microvascular perfusion/density normalized upon returning to baseline FiO2.CONCLUSIONS: A two-hour exposure to hyperoxia in critically ill patients was associated with a slight increase in EPO levels within 48\uc2\ua0h. Adequately controlled studies are needed to confirm the effect of short-term hyperoxia on erythropoiesis.TRIAL REGISTRATION: ClinicalTrials.gov ( www.clinicaltrials.gov ), NCT02481843 , registered 15th June 2015, retrospectively registered

    Tripartite interactions comprising yeast-endobacteria systems in the gut of vector mosquitoes

    Get PDF
    It is shown that bacteria use yeast as a niche for survival in stressful conditions, therefore yeasts may act as temporary or permanent bacterial reservoirs. Endobacteria colonise the fungal vacuole of various osmotolerant yeasts which survive and multiply in sugar-rich sources such as plant nectars. Nectar-associated yeasts are present even in the digestive system of insects and often establish mutualistic symbioses with both hosts. Research on insect microbial symbioses is increasing but bacterial-fungal interactions are yet unexplored. Here, we have focused on the endobacteria of Wickerhamomyces anomalus (formerly Pichia anomala and Candida pelliculosa), an osmotolerant yeast associated with sugar sources and the insect gut. Symbiotic strains of W. anomalus influence larval development and contribute digestive processes in adults, in addition to exerting wide antimicrobial properties for host defence in diverse insects including mosquitoes. Antiplasmodial effects of W. anomalus have been shown in the gut of the female malaria vector mosquito Anopheles stephensi. This discovery highlights the potential of utilizing yeast as a promising tool for symbiotic control of mosquito-borne diseases. In the present study, we have carried out a large Next Generation Sequencing (NGS) metagenomics analysis including W. anomalus strains associated with vector mosquitoes Anopheles, Aedes and Culex, which has highlighted wide and heterogeneous EB communities in yeast. Furthermore, we have disclosed a Matryoshka-like association in the gut of A stephensi that comprises different EB in the strain of W. anomalus WaF17.12. Our investigations started with the localization of fast-moving bacteria-like bodies within the yeast vacuole of WaF17.12. Additional microscopy analyses have validated the presence of alive intravacuolar bacteria and 16S rDNA libraries from WaF17.12 have identified a few bacterial targets. Some of these EB have been isolated and tested for lytic properties and capability to re-infect the yeast cell. Moreover, a selective competence to enter yeast cell has been shown comparing different bacteria. We suggested possible tripartite interactions among EB, W. anomalus and the host, opening new knowledge on the vector biology

    Microcirculatory effects of the transfusion of leukodepleted or non-leukodepleted red blood cells in patients with sepsis: a pilot study

    Get PDF
    Introduction: Microvascular alterations impair tissue oxygenation during sepsis. A red blood cell (RBC) transfusion increases oxygen (O2)-delivery but rarely improves tissue O2 uptake in septic patients. Possible causes include RBC alterations due to prolonged storage or residual leukocyte-derived inflammatory mediators. The aim of this study was to compare the effects of two types of transfused-RBCs on microcirculation in septic patients. Methods: In a prospective randomized trial, 20 septic patients were divided into two separate groups and received either non-leukodepleted (n = 10) or leukodepleted (n = 10) RBC transfusions. Microvascular density and perfusion were assessed with sidestream dark-field (SDF) imaging sublingually, before and 1 hour after transfusions. Thenar tissue O2-saturation (StO2) and tissue haemoglobin index (THI) were determined with near-infrared spectroscopy (NIRS), and a vascular occlusion test was performed. The microcirculatory perfused boundary region was assessed in SDF images as an index of glycocalyx damage and glycocalyx compounds (syndecan-1, hyaluronan, heparan sulfate) were measured in the serum. Results: No differences were observed in microvascular parameters at baseline and after transfusion between the groups, except for the proportion of perfused vessels (PPV) and blood flow velocity, which were higher after transfusion in the leukodepleted group. Microvascular flow index in small vessels (MFI) and blood flow velocity exhibited different responses to transfusion between the two groups (P = 0.03 and P = 0.04, respectively), with a positive effect of leukodepleted RBCs. When looking at within-group changes, microcirculatory improvement was only observed in patients that received leukodepleted RBC transfusion as suggested by the increase in De Backer score (P = 0.02), perfused vessel density (P = 0.04), PPV (P = 0.01) and MFI (P = 0.04). Blood flow velocity decreased in the non-leukodepleted group (P = 0.03). THI and StO2-upslope increased in both groups. StO2 and StO2-downslope increased in patients who received non-leukodepleted RBC transfusions. Syndecan-1 increased after the transfusion of non-leukodepleted RBCs (P = 0.03). Conclusions: This study does not show a clear superiority of leukodepleted over non-leukodepleted RBC transfusions on microvascular perfusion in septic patients, although it suggests a more favourable effect of leukodepleted RBCs on microcirculatory convective flow. Further studies are needed to confirm these findings. © 2014 Donati et al.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Too much tolerance for hyperoxemia in mechanically ventilated patients with SARS-CoV-2 pneumonia? Report from an Italian intensive care unit

    Get PDF
    BackgroundIn COVID-19 patients requiring mechanical ventilation, the administration of high oxygen (O2) doses for prolonged time periods may be necessary. Although life-saving in most cases, O2 may exert deleterious effects if administered in excessive concentrations. We aimed to describe the prevalence of hyperoxemia and excessive O2 administration in mechanically ventilated patients with SARS-CoV-2 pneumonia and determine whether hyperoxemia is associated with mortality in the Intensive Care Unit (ICU) or the onset of ventilator-associated pneumonia (VAP).Materials and methodsRetrospective single-center study on adult patients with SARS-CoV-2 pneumonia requiring invasive mechanical ventilation for ≥48 h. Patients undergoing extracorporeal respiratory support were excluded. We calculated the excess O2 administered based on the ideal arterial O2 tension (PaO2) target of 55–80 mmHg. We defined hyperoxemia as PaO2 > 100 mmHg and hyperoxia + hyperoxemia as an inspired O2 fraction (FiO2) > 60% + PaO2 > 100 mmHg. Risk factors for ICU-mortality and VAP were assessed through multivariate analyses.ResultsOne hundred thirty-four patients were included. For each day of mechanical ventilation, each patient received a median excess O2 of 1,121 [829–1,449] L. Hyperoxemia was found in 38 [27–55]% of arterial blood gases, hyperoxia + hyperoxemia in 11 [5–18]% of cases. The FiO2 was not reduced in 69 [62–76]% of cases of hyperoxemia. Adjustments were made more frequently with higher PaO2 or initial FiO2 levels. ICU-mortality was 32%. VAP was diagnosed in 48.5% of patients. Hyperoxemia (OR 1.300 95% CI [1.097–1.542]), time of exposure to hyperoxemia (OR 2.758 [1.406–5.411]), hyperoxia + hyperoxemia (OR 1.144 [1.008–1.298]), and daily excess O2 (OR 1.003 [1.001–1.005]) were associated with higher risk for ICU-mortality, independently of age, Sequential Organ failure Assessment score at ICU-admission and mean PaO2/FiO2. Hyperoxemia (OR 1.033 [1.006–1.061]), time of exposure to hyperoxemia (OR 1.108 [1.018–1.206]), hyperoxia + hyperoxemia (OR 1.038 [1.003–1.075]), and daily excess O2 (OR 1.001 [1.000–1.001]) were identified as risk factors for VAP, independently of body mass index, blood transfusions, days of neuromuscular blocking agents (before VAP), prolonged prone positioning and mean PaO2/FiO2 before VAP.ConclusionExcess O2 administration and hyperoxemia were common in mechanically ventilated patients with SARS-CoV-2 pneumonia. The exposure to hyperoxemia may be associated with ICU-mortality and greater risk for VAP

    Our future with clean air: ClairCity

    Get PDF
    In the European project ClairCity (www.claircity.eu), we apply a societal approach to behaviour change towards reducing air pollution and carbon emissions in cities. The project is engaging with citizens and policymakers from six European cities/regions. Several public engagement strategies are being employed, including crowdsourcing issues and solutions in each city, an interactive policy game, a mobile app for businesses, schools competitions and workshops for action. The project doesn’t aim to change individual behaviour in its lifetime, but is instead aiming to influence city development in order to ensure that low emission patterns of behaviour are encouraged, enabled and supported sufficiently for them to become new normals. Policy packages will be generated for each city that will reflect how changes can be made to the social and structural organisation of the city to ensure that low emission options can become embedded in citizens’ everyday lives. This presentation shows the process and challenges in this approach, so that others can learn from the project developments
    • …
    corecore