30 research outputs found

    Hepatitis C Virus and Hepatocellular Carcinoma: Pathogenetic Mechanisms and Impact of Direct-Acting Antivirals

    Get PDF
    INTRODUCTION: Globally, between 64 and 103 million people are chronically infected with Hepatitis C virus (HCV), with more than 4.6 million people in the United States and is associated with more than 15.000 deaths annually. Chronic infection can result in cirrhosis and hepatocellular carcinoma. EXPLANATION: Epidemiological studies have indicated that persistent infection with hepatitis C virus (HCV) is a major risk for the development of hepatocellular carcinoma (HCC), mainly through chronic inflammation, cell deaths, and proliferation. Despite the new direct-acting antiviral drugs (DAA's) being able to clear the HCV, HCC recurrence rate in these patients is still observed. CONCLUSION: In this review we highlighted some aspects that could be involved in the onset of HCV-induced HCC such as immune system, viral factors and host genetics factors.Moreover, we focused on some of the last reports about the effects of DAA's on the HCV clearance and their potential implications in HCC recurrence

    Systemic adipokines, hepatokines and interleukin-6 in HCV-monoinfected and HCV/HIV coinfected patients treated with direct antiviral agents (DAAs)

    Get PDF
    In this study, we demonstrated that that altered levels ofadipokines/hepatokines in HCV-infected patients, including HIV coinfected, can be restored by treatment with direct antiviral agents (DAAs), thus indicating the important metabolic changes occurring during the eradication of this viral infection

    Type I/II interferon in HIV-1-infected patients: expression in gut mucosa and in peripheral blood mononuclear cells and its modification upon probiotic supplementation

    Get PDF
    Expression of type I and II interferon (IFN) was evaluated in gut-associated lymphoid tissue (GALT) and peripheral blood mononuclear cells (PBMCs) of HIV-1-positive patients on long-term, suppressive, antiretroviral therapy before and after probiotic supplementation. IFNα subtypes and IFNβ were expressed at higher levels in GALT compared to PBMC, whereas an opposite trend of expression was recorded for IFNγ. An increase of IFNα6, IFNα10, IFNα14, IFNα17, and IFNα21 and a decrease of IFNγ were observed in both anatomical sites after probiotic supplementation

    Modulation of tryptophan/serotonin pathway by probiotic supplementation in human immunodeficiency virus-positive patients: preliminary results of a new study approach

    Get PDF
    Background: To date, no data are available regarding the effects of probiotics on the pathway of tryptophan/serotonin metabolism among human immunodeficiency virus (HIV) 1–infected individuals. Because a condition of dysbiosis might be responsible for the altered use of tryptophan described in this population, the aim of this study was to investigate the link between probiotic supplementation and serotonin levels in combined antiretroviral therapy–treated patients and the subsistence of an interplay with inflammation. Methods: We conducted a pilot study that included 8 HIV-positive subjects. We collected blood and fecal samples before and after 6 months of probiotic supplementation, to measure the level of serotonin in serum and tryptophan in stool, the expression of CD38 and HLADR on peripheral CD4+ T lymphocytes (as immune activation markers), the expression of indoleamine 2,3-dioxygenase 1 messenger RNA (mRNA) and IFN-γ mRNA (as markers of tryptophan metabolism and systemic inflammation). Results: After probiotic supplementation, we observed a significant increase in concentration of serum serotonin (P=.008) and a decreased level of tryptophan in plasma. Moreover, a significant reduction in CD38 and HLA-DR expression on the surface of peripheral CD4+ T cells (P=.008) and a reduced expression of indoleamine 2,3-dioxygenase 1 mRNA on peripheral blood mononuclear cells (P=.04) were observed. Conclusions: Considering that this probiotic (Vivomixx® in EU; Visbiome® in USA) has an influence on tryptophan metabolism, larger studies on this topic are needed

    Targeting microbiome: an alternative strategy for fighting SARS-CoV-2 infection

    Get PDF
    Respiratory and gastrointestinal symptoms are the predominant clinical manifestations of the coronavirus disease 2019 (COVID-19). Infecting intestinal epithelial cells, the severe acute respiratory syndrome coronavirus-2 may impact on host's microbiota and gut inflammation. It is well established that an imbalanced intestinal microbiome can affect pulmonary function, modulating the host immune response ("gut-lung axis"). While effective vaccines and targeted drugs are being tested, alternative pathophysiology-based options to prevent and treat COVID-19 infection must be considered on top of the limited evidence-based therapy currently available. Addressing intestinal dysbiosis with a probiotic supplement may, therefore, be a sensible option to be evaluated, in addition to current best available medical treatments. Herein, we summed up pathophysiologic assumptions and current evidence regarding bacteriotherapy administration in preventing and treating COVID-19 pneumonia

    Modulation of Phenylalanine and Tyrosine Metabolism in HIV-1 Infected Patients with Neurocognitive Impairment: Results from a Clinical Trial

    Get PDF
    To investigate the effects of oral bacteriotherapy on intestinal phenylalanine and tyrosine metabolism, in this longitudinal, double-arm trial, 15 virally suppressed HIV+ individuals underwent blood and fecal sample collection at baseline and after 6 months of oral bacteriotherapy. A baseline fecal sample was collected from 15 healthy individuals and served as control group for the baseline levels of fecal phenylalanine and tyrosine. CD4 and CD8 immune activation (CD38+) was evaluated by flow cytometry. Amino acid evaluation on fecal samples was conducted by Proton Nuclear Magnetic Resonance. Results showed that HIV+ participants displayed higher baseline phenylalanine/tyrosine ratio values than healthy volunteers. A significand reduction in phenylalanine/tyrosine ratio and peripheral CD4+ CD38+ activation was observed at the end of oral bacteriotherapy. In conclusion, probiotics beneficially affect the immune activation of HIV+ individuals. Therefore, the restoration of intestinal amino acid metabolism could represent the mechanisms through which probiotics exert these desirable effects

    Oral Bacteriotherapy Reduces the Occurrence of Chronic Fatigue in COVID-19 Patients

    Get PDF
    Long COVID refers to patients with symptoms as fatigue, “brain fog,” pain, suggesting the chronic involvement of the central nervous system (CNS) in COVID-19. The supplementation with probiotic (OB) would have a positive effect on metabolic homeostasis, negatively impacting the occurrence of symptoms related to the CNS after hospital discharge. On a total of 58 patients hospitalized for COVID-19, 24 (41.4%) received OB during hospitalization (OB+) while 34 (58.6%) taken only the standard treatment (OB–). Serum metabolomic profiling of patients has been performed at both hospital acceptance (T0) and discharge (T1). Six months after discharge, fatigue perceived by participants was assessed by administrating the Fatigue Assessment Scale. 70.7%of participants reported fatigue while 29.3%were negative for such condition. The OB+ group showed a significantly lower proportion of subjects reporting fatigue than the OB– one (p < 0.01). Furthermore, OB+ subjects were characterized by significantly increased concentrations of serum Arginine, Asparagine, Lactate opposite to lower levels of 3-Hydroxyisobutirate than those not treated with probiotics. Our results strongly suggest that in COVID-19, the administration of probiotics during hospitalization may prevent the development of chronic fatigue by impacting key metabolites involved in the utilization of glucose as well as in energy pathways

    The peculiar challenge of bringing CAR-T cells into the brain: Perspectives in the clinical application to the treatment of pediatric central nervous system tumors

    Get PDF
    Childhood malignant brain tumors remain a significant cause of death in the pediatric population, despite the use of aggressive multimodal treatments. New therapeutic approaches are urgently needed for these patients in order to improve prognosis, while reducing side effects and long-term sequelae of the treatment. Immunotherapy is an attractive option and, in particular, the use of gene-modified T cells expressing a chimeric antigen receptor (CAR-T cells) represents a promising approach. Major hurdles in the clinical application of this approach in neuro-oncology, however, exist. The peculiar location of brain tumors leads to both a difficulty of access to the tumor mass, shielded by the blood-brain barrier (BBB), and to an increased risk of potentially life-threatening neurotoxicity, due to the primary location of the disease in the CNS and the low intracranial volume reserve. There are no unequivocal data on the best way of CAR-T cell administration. Multiple trials exploring the use of CD19 CAR-T cells for hematologic malignancies proved that genetically engineered T cells can cross the BBB, suggesting that systemically administered CAR-T cell can be used in the neuro-oncology setting. Intrathecal and intra-tumoral delivery can be easily managed with local implantable devices, suitable also for a more precise neuro-monitoring. The identification of specific approaches of neuro-monitoring is of utmost importance in these patients. In the present review, we highlight the most relevant potential challenges associated with the application of CAR-T cell therapy in pediatric brain cancers, focusing on the evaluation of the best route of delivery, the peculiar risk of neurotoxicity and the related neuro-monitoring

    Innate, non-cytolytic CD8+ T cell-mediated suppression of HIV replication by MHC-independent inhibition of virus transcription

    No full text
    MHC-I-restricted, virus-specific cytotoxic CD8+ T cells control HIV/SIV replication via the recognition and killing of productively infected CD4+ T cells. Several studies in SIV-infected macaques suggest that CD8+ T cells may also decrease virus production by suppressing viral transcription. Here, we show that non-HIV-specific, TCR-activated CD8+ T cells suppress HIV transcription via a virus- and MHC-independent immunoregulatory mechanism that modulates CD4+ T cell proliferation and activation. We also demonstrate that this CD8+ T cell-mediated effect promotes the survival of non-productively infected CD4+ T cells harboring integrated, inducible provirus. Finally, we used RNA sequencing and secretome analysis to identify candidate cellular pathways that are involved in the virus-silencing mediated by these CD8+ T cells. This study describes and characterizes a novel mechanism of immune-mediated HIV silencing that may be involved in the establishment and maintenance of the reservoir under antiretroviral therapy and therefore represent a major obstacle to HIV eradication

    Cognitive impairment and CSF proteome modification after oral bacteriotherapy in HIV patients

    No full text
    Abstract Objective: To investigate whether a probiotic supplementation to cART patients modifies the cerebrospinal fluid (CSF) proteome and improves neurocognitive impairment. Methods: 26 CSF samples from 13 HIV-positive patients [six patients living with HIV (PLHIV) and seven patients with a history of AIDS (PHAIDS)] were analyzed. All patients underwent to neurocognitive evaluation and blood sampling at baseline and after 6 months of oral bacteriotherapy. Immune phenotyping and activation markers (CD38 and HLA-DR) were evaluated on peripheral blood mononuclear cells (PBMC). Plasma levels of IL-6, sCD14, and MIP-1β were detected, by enzyme-linked immunosorbent assay (ELISA). Functional proteomic analysis of CSF sample was conducted by two-dimensional electrophoresis; a multivariate analysis was performed by principal component analysis (PCA) and data were enriched by STRING software. Results: Oral bacteriotherapy leads to an improvement on several cognitive test and neurocognitive performance in both groups of HIV-positive subjects. A reduction in the percentage of CD4+CD38+HLA–DR+ T cells was also observed at peripheral level after the probiotic intake (p = 0.008). In addition, the probiotic supplementation to cART significantly modifies protein species composition and abundance at the CSF level, especially those related to inflamma- tion (β2-microglobulin p = 0.03; haptoglobin p = 0.06; albumin p = 0.003; hemoglobin p = 0.003; immunoglobulin heavy chains constant region p = 0.02, transthyretin p = 0.02) in PLHIV and PHAIDS. Conclusions: Our results suggest that oral bacteriotherapy as a supplement to cART could exert a role in the amelioration of inflammation state at peripheral and CNS level
    corecore