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Abstract
Respiratory and gastrointestinal symptoms are the predom-
inant clinical manifestations of the coronavirus disease 2019 
(COVID-19). Infecting intestinal epithelial cells, the severe 
acute respiratory syndrome coronavirus-2 may impact on 
host’s microbiota and gut inflammation. It is well established 
that an imbalanced intestinal microbiome can affect pulmo-
nary function, modulating the host immune response (“gut-
lung axis”). While effective vaccines and targeted drugs are 
being tested, alternative pathophysiology-based options to 
prevent and treat COVID-19 infection must be considered on 
top of the limited evidence-based therapy currently avail-
able. Addressing intestinal dysbiosis with a probiotic supple-
ment may, therefore, be a sensible option to be evaluated, 
in addition to current best available medical treatments. 

Herein, we summed up pathophysiologic assumptions and 
current evidence regarding bacteriotherapy administration 
in preventing and treating COVID-19 pneumonia.

© 2021 S. Karger AG, Basel

Introduction

The coronavirus disease 2019 (COVID-19), caused by 
severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2), has been more than a disease outbreak. Aside 
from putting an unprecedented strain on health-care sys-
tems, the global economy, and society, it boosted the re-
search community worldwide toward new therapeutic 
options as never before. Surprisingly, among all treat-
ment strategies tested in Randomized Controlled Studies 
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(RCTs) so far, the most effective resulted in being the sim-
plest and mostly available at times [1]. While over the first 
hit of SARS-CoV-2 outbreak, multiple drugs that had al-
ready been tested in other conditions with similar infec-
tion patterns (i.e., Ebola virus, MERS-CoV) were de-
ployed at this stage of the pandemic specific methods 
based on physiopathology to prevent and treat CO-
VID-19 are expected to emerge.

Angiotensin-converting enzyme 2 (ACE2) acts as a 
functional receptor for SARS-CoV-2 [2]. As the alveolar 
epithelial cells, enterocytes equally express ACE2 recep-
tors in the brush border membrane [3], representing, 
therefore, an entry point and reservoir for the virus [4].

A growing body of evidence suggests that alteration of 
intestinal flora composition, the so-called dysbiosis, 
which was observed in COVID-19 patients, may play a 
relevant role in determining the course of the disease by 
increasing systemic pro-inflammatory cytokine produc-
tion [5, 6]. Since oral bacteriotherapy is able to restore the 
composition of intestinal flora and therefore modulate 
pro-inflammatory cytokine production [7], its potential 
clinical impact in COVID-19 patients should be thor-
oughly evaluated.

SARS-CoV-2 and GUT: An Undervalued Relationship

In addition to fever and typical pulmonary infection 
manifestations, an increasing number of patients with 
COVID-19 reported gastrointestinal symptoms such as 
diarrhea, anorexia, nausea, vomiting, stomach discom-
fort, and gastrointestinal bleeding [4, 8–10]. Interesting-
ly, the COVID-19 patients experiencing gastrointestinal 
symptoms had a more severe respiratory disease to the 
extent that these symptoms could be used to predict ven-
tilatory support requirement and ICU admission.

It is now well-recognized that ACE2 receptor is equal-
ly expressed in the lung and the intestinal epithelium. In 
particular, studies involving immunofluorescence tech-
niques showed that this protein is largely expressed in 
gastric, duodenal, and rectal epithelial glandular cells, 
representing a possible gateway for SARS-CoV-2 [11]. In 
this context, SARS-CoV-2 could be responsible for gas-
trointestinal inflammation [12] leading to malabsorp-
tion, intestinal disorders, activation of the enteric nervous 
system, and, ultimately, diarrhea.

Indeed, the interaction of specific SARS-CoV-2 spike 
proteins with ACE2 receptor could induce pro-inflam-
matory chemokine and cytokine excessive release. This 
massive release, a hallmark of COVID-19 patients, leads 

to an acute intestinal inflammatory response, confirmed 
by raised levels of fecal calprotectin and serum IL-6, and 
to multi-organ damage consequent to systemic cytokine 
storm [5, 6].

In addition to that, gut ACE2 is also a relevant regula-
tor of amino acid transport, being a chaperone for the 
membrane trafficking of neutral amino acid transporter 
(B0AT1), which is expressed both in the proximal kidney 
tubule and the small intestine [13, 14]. Considering that 
ACE2 deficient mice were found to have low plasma lev-
els of tryptophan, increased susceptibility to ulcerative 
colitis, and severe diarrhea [15], it was postulated that 
SARS-CoV-2 might alter intestinal microbiome and in-
flammatory response affecting local amino acid metabo-
lism [13, 15, 16].

Moreover, this alternative mechanism could also pro-
mote an excessive gut permeability through epithelial 
tight junctions’ alterations affecting the intestinal barrier 
function in COVID-19 patients. This was associated with 
a profound increase of Zonulin, a well-known physiolog-
ical regulator of tight junction complex in the digestive 
tract, which was also found to be correlated with higher 
mortality in COVID-19 patients [17].

These pieces of evidence point out that the gut may 
represent a route of infection and a SARS-CoV-2 reser-
voir [4, 18]. Indeed, up to 50% of patients released SARS-
CoV-2 and its nucleic acid in the stool samples during the 
disease’s acute phase. The infection itself generally lasted 
longer in COVID-19 patients who had previously experi-
enced gastrointestinal symptoms.

Microbiome and Gut-Lung Axis

Nobel et al. [19] reported that SARS-CoV-2 infection 
generally lasted longer in COVID-19 patients who had 
previously experienced gastrointestinal problems. Be-
sides, subjects with diabetes mellitus, hypertension, cere-
brovascular disease, and chronic obstructive pulmonary 
disease experience a more severe course of COVID-19 
disease. All these co-morbidities have a common denom-
inator: gut dysbiosis.

Not surprisingly, compared to healthy controls, some 
COVID-19 patients showed microbial dysbiosis with de-
creased levels of beneficial bacteria as Lactobacillus and 
Bifidobacterium, lower bacterial diversity, and higher rel-
ative abundance of opportunistic pathogens including 
Streptococcus spp., Rothia spp., Veillonella spp., and Acti-
nomyces spp [18]. It is becoming increasingly clear that 
the loss of certain intestinal bacterial strains might be re-
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sponsible for a dysregulated immune response to SARS-
CoV-2 [20]. Far away from being considered just part of 
the digestive tract, the gut is crucially involved in the im-
mune system, hosting a large microbial population that 
can affect the body’s respiratory tract through immune 
regulation [21, 22].

The “gut-lung axis” refers to the bidirectional cross-
talk between the intestinal tract and the lungs, whose ul-
timate scope is to modulate the immune response in both 
compartments as a result of their respective microbial 
composition and related patterns [23]. This gut-lung in-
terplay embraces multiple anatomical communications 
and complex pathways [24]. The mesenteric lymphatic 
system is one of those. Using this route, intact bacteria, 
their fragments, or metabolites can cross the intestinal 
barrier and reach the circulatory system influencing oth-
er organs’ immune response, among these the lung [25–
27]. However, although the gut’s impact on respiratory 
function is well reckoned, the available evidence of the 
other way round is still sparse. Nevertheless, postulated 
apoptosis dysfunction in the intestine tract related to con-
current respiratory infections [28] may account for CO-
VID-19-associated gastrointestinal symptoms.

On the contrary, some COVID-19 patients who re-
solved SARS-CoV-2 infection in their respiratory tract 
exhibited the presence of SARS-CoV-2 RNA in their fecal 
samples, suggesting that the virus replication in the gas-
trointestinal tract may be independent of the respiratory 
compartment [11, 29, 30]. This hypothesis is endorsed by 
recent studies suggesting that gut involvement in CO-
VID-19 is even more severe and prolonged compared 
with the respiratory tract [31].

Gut microbiome components have significant micro-
bial inhibitory properties toward lung tissues, accom-
plished through alveolar macrophage, neutrophils, and 
natural killer cell activity [32, 33]. To a greater extent, 
bacterial metabolites, as short-chain fatty acids (SCFAs), 
are proved to act in the lungs attenuating inflammatory 
responses. Moreover, some bacterial strains could en-
hance the release of molecules with antiviral activity like 
the nuclear factor erythroid 2p45-related factor 2 (Nrf2) 
and its target Heme oxygenase-1 (HO-1) [34–38].

Although the evidence in COVID-19 is still sparse, 
bacteriotherapy could represent a potential strategy to 
counteract SARS-CoV-2 infection. Given the microbi-
ome’s crucial role in modulating host immune and in-
flammatory response, bacteriotherapy may minimize 
gastrointestinal symptoms and shield the respiratory 
tract.

Targeting Microbiome to Prevent SARS-CoV-2

As stated by the WHO, probiotics are “live microor-
ganisms which, when administered in adequate amounts, 
confer a health benefit on the host” [39]. Historically, the 
concept of probiotics began around 1,900 by the Nobel 
laureate Elie Metchnikoff, who discovered that the con-
sumption of live bacteria (Lactobacillus bulgaricus) in yo-
gurt or fermented milk improved some biological fea-
tures of the gastrointestinal tract [40]. Probiotics are now 
widely available, generally in dairy products, such as yo-
gurt, dessert, ice cream, juices, and capsules, drops, sa-
chets, etc. The most common strains commercially avail-
able belong to the Lactobacillus and Bifidobacterium spe-
cies, which proved some beneficial effects to the human 
body when administered in adequate amounts. These 
mentioned bacterial species are known to be involved in 
some essential physiological functions such as stimula-
tion of immune response, prevention of pathogenic and 
opportunistic microbial colonization, production of 
SCFA, catabolism of carcinogenic substances, and syn-
thesis of vitamins such as B and K [41–43]. In this regard, 
medical data showed that particular strains of probiotics 
facilitate the prevention of viral and bacterial infections 
(such as sepsis, gastroenteritis, and respiratory tract syn-
drome [4]), improve the intestinal epithelial barrier func-
tion, and compete with disease-causing agents for nutri-
ents. Similar to other SARS coronaviruses, SARS-CoV-2 
interacts with ACE2 receptor for gut and lung intracel-
lular invasion [2, 24] (Fig. 1).For these reasons, some re-
searchers suggested that ACE inhibitors might benefit pa-
tients with COVID-19 by reducing pulmonary inflam-
mation [44] although others argued that ACE inhibitors 
might enhance viral entry regulating ACE2 levels.

The potential interaction between probiotics and ACE 
enzymes was suggested in the previous studies addressing 
the probiotics’ potential antihypertensive effect [45]. In-
deed, during food fermentation, probiotics release bioac-
tive peptides able to inhibit the ACE enzymes by blocking 
the active sites [46, 47]. The debris of the dead probiotic 
cells also acted as ACE inhibitors [48].

In this respect, Anwar et al. [49] demonstrated in a 
computational docking study that 3 metabolites of Lacto-
bacillus plantarum (Plantaricin W, Plantaricin JLA-9, 
and Plantaricin D) prevent the binding of SARS-CoV-2 
with ACE2 receptors suggesting therefore antiviral prop-
erty of L. plantarum against SARS-CoV-2. Taken all to-
gether, these findings stress the assumption that probiot-
ics could compete with ACE2 receptors paving the way 
for their potential use to prevent SARS-CoV-2 infection.
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Bacteriotherapy was found to reduce both upper and 
lower respiratory tract infections [50]. Probiotic lactic 
acid bacteria were administered directly in the respira-
tory tract or as oral supplements to improve the immune 
response and ht viral infections [51]. As an alternative 
mechanism of action, probiotics were also found to in-
hibit viruses by interacting directly with them with a 
mechanism similar to phagocytosis.

More recently, lactobacilli isolated from healthy hu-
man noses showed probiotic effects in the form of nasal 
spray [52], by avoiding the attack of viral particles to mu-

cosal cells. These findings also open the chance to deploy 
probiotics in a nasal spray to boost the immune system 
and avoid respiratory tract infections .

To the best of our knowledge, no clinical trial has for-
mally investigated the role of probiotics in preventing 
COVID-19 so far. However, a multicentric RCT is cur-
rently evaluating the effects of a 2-month probiotic sup-
plement on the incidence and severity of COVID-19 
among health-care workers exposed to SARS-CoV-2 (Ta-
ble 1) [53]. The trial was completed in October 2020, and 
results are expected soon.

Fig. 1. Mechanisms of action of probiotic supplementation. Legend: SARS-CoV-2, severe acute respiratory syn-
drome coronavirus-2.
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In summary, probiotics may act as antiviral agents in-
terfering with viral entry into cells and/or inhibiting virus 
replication. This may lead to a limitation in the spread of 
SARS-CoV-2 in the gut and respiratory tract, as a result 
of the restoration of the gut and respiratory microbiota.

Targeting Microbiome to ht SARS-CoV2

Since the gut microbiome is altered in COVID-19 pa-
tients [18], probiotics supplementation may help restore 
the gut microbiota and, therefore, maintain a healthy gut-
lung axis and minimize translocation of pathogenic bac-
teria across the gut barrier as well as the chances of sec-
ondary bacterial infections. As cytokines storm occurs in 
patients with severe COVID-19, immune-modulatory ef-
fects of probiotics might be relevant to prevent acute lung 
injury, acute respiratory distress syndrome, and multiple 
organ failure, which are life-threatening complications of 
COVID-19 [54].

Boosting immune responses during the incubation 
and nonsevere stages of COVID-19 infection are per-
ceived as crucial to eliminate the virus and prevent dis-
ease progression to severe stages. Administration of cer-
tain Bifidobacteria or Lactobacilli has a beneficial impact 
on influenza virus clearance from the respiratory tract 
[65]. Besides, probiotic strains increase the levels of type 
I interferons, the number and activity of antigen-present-
ing cells, NK cells, T cells, and the levels of systemic and 
mucosal-specific antibodies in the lungs [65].

Another relevant effect of probiotics is to enforce and 
maintain the integrity of tight junctions between entero-
cytes: Hummel et al. [66] showed that gram-positive pro-
biotic lactobacilli modulate epithelial barrier function via 
their effect on adherence junction protein expression and 
complex formation [66]. Also, incubation with lactoba-
cilli differentially influences the phosphorylation of ad-
herence junction proteins and the abundance of protein 
kinase C (PKC) isoforms such as PKCδ that positively 
modulates epithelial barrier function.

To this extent, in our previous work, HIV-1-infected 
patients receiving oral bacteriotherapy exhibited histo-
morphological and ultrastructural changes in their gut 
mucosa, characterized by an improvement of epithelial 
integrity, a reduction of inflammatory infiltrate and en-
terocyte apoptosis in the terminal ileum, cecum, ascend-
ing, transverse, and descending colon [67].

Consistent with previous findings, these immunomod-
ulatory benefits seem to be equally crucial in COVID-19 
patients. Based on these shreds of evidence, our group ad-

dressed the topic over the past year, carrying out 2 retro-
spective observational studies including adults with severe 
COVID-19 pneumonia to investigate the role of oral bac-
teriotherapy on the top of best available therapy [54, 55].

In the first piece of work, we compared respiratory fail-
ure incidence and symptoms control in patients with CO-
VID-19 pneumonia receiving a probiotic multistrain for-
mulation (Sivomixx®, SivoBiome®) in adjunction to 
standard medical therapy [54]. Out of 70 patients en-
rolled in the study, 28 received oral bacteriotherapy for 14 
days. According to our results, 92.9% of the intervention 
group achieved diarrhea and other symptoms control 
within 72 h from study inclusion (vs. less than half in 7 
days in the not supplemented group). Moreover, the risk 
of developing respiratory failure was 8-fold lower in pa-
tients receiving oral bacteriotherapy. Both the prevalence 
of ICU admission and mortality were lower in the inter-
vention group [54].

In the second study, we extended our sample size. We 
focused our observation on mortality, ICU admission, 
and length of hospital staying of patients with COVID-19 
pneumonia receiving probiotics as complementary thera-
py [55]. Out of 200 patients enrolled, 88 received oral bac-
teriotherapy (Sivomixx®). Results concerning mortality 
were quite encouraging: we found a significant reduction 
in the intervention group (11 vs. 30%; p < 0.001). In addi-
tion to that, by multivariate analysis, bacteriotherapy 
emerged as an independent variable associated with a re-
duced risk for death. In terms of ICU admission, no sig-
nificant difference among the 2 groups was found. By con-
trast, we found a longer length of hospitalization in pa-
tients receiving bacteriotherapy. We interpreted this data 
in line with the lower mortality rate of this group [55].

Interestingly, no adverse reactions in patients treated 
with oral bacteriotherapy were recorded in both studies. 
In conclusion, for the first time, we determined the role 
of probiotics in treating patients with COVID-19 pneu-
monia, providing positive evidence in favor of their im-
plementation in addition to the best available therapy. To 
the best of our knowledge, 7 RCTs that may soon replicate 
this insight are currently ongoing (Table 1).

The New Frontier: Are Distinct Microbiome Patterns 
Associated with Different Risks of COVID-19 
Progression?

Several studies showed that dietary habits and the 
amount of food consumed could shape human micro-
biome [68]. Diet in developing countries usually con-
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sists of food containing more fiber than a modern West-
ern diet consisting of food often processed and kept in 
cold storage [69]. It is now well reckoned that different 
populations with different diets could have distinct mi-
crobiome patterns. Generally, Firmicutes are dominant 
in people with animal-based diets, whereas Bacteroide-
tes are dominant in people with a vegetarian diet [70]. 
Similarly, molecules involved in the digestion of fiber 
and concentration of SCFAs are differently represented 
in the microbiome of populations with different diets 
[71, 72]. Interestingly, a plant food-based diet main-
tains a more stable microbiota diversity and eubiosis 
and promotes the microbes that ensue anti-inflamma-
tory response [73]. Preliminary reports suggested that 
different progression rates to severe disease and fatality 
rates observed for SARS-CoV-2 in diverse populations 
could be related to distinct microbiome patterns. For 
example, it was observed that India reported a fatality 
rate caused by SARS-CoV-2 lower if compared to other 
regions consuming meat-rich diet and saturated fatty 
acids, such as the USA, Brazil, and European countries 
[74]. Currently, it is not possible to strongly support 
this hypothesis, but nevertheless, it could be a clue to 
understand the variations observed in the impact of 
COVID-19 in populations residing in different geo-
graphical areas.

Expert Opinion

Probiotics may play a beneficial role even though there 
is much to be discovered on their specific mechanisms of 
action against SARS-CoV-2. The damage of the gut bar-
rier integrity associated with microbial translocation 
along with the dysregulated inflammatory response ex-
plains why probiotics could represent a valuable thera-
peutic tool in COVID-19 patients [56, 69, 75–79].

However, clinicians should be mindful that probiotics’ 
clinical benefit depends upon several factors, such as the 
bacterial composition of different commercial products, 
manufacturing processes, dose regimen, etc. Several stud-
ies had addressed the impact of probiotics in treating 
many gastrointestinal disorders, such as Clostridium dif-
ficile colitis, inflammatory bowel disease, Helicobacter py-
lori infection, etc. [70, 71]. Moreover, in recent studies, 
probiotics were found to restore gut barrier integrity and, 
therefore, the gut-brain axis in HIV patients [72]. In con-
clusion, further understanding of gut microbiome modu-
lation on host health is expected to expand probiotic clin-
ical applications soon.

Conclusion

The “gut-lung axis” pathophysiology suggests that the 
intestinal microbiota may play a role in counteracting the 
“cytokine storm,” which is now clearly being the corner-
stone of COVID-19 disease [80]. Even though evidence 
coming from clinical trials is still on the way, we showed 
for the first time a consistent reduction in mortality and 
more successful symptoms control in patients with CO-
VID-19 pneumonia receiving oral bacteriotherapy as a 
complementary therapy.

Therefore, we suggest physicians consider the early 
administration of oral bacteriotherapy on the top of best 
available treatment while dealing with patients with CO-
VID-19 pneumonia, especially in those experiencing gas-
trointestinal symptoms. This alternative option has mul-
tiple advantages, indeed: it is mostly freely available, 
cheap, and with limited/no adverse effects.
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