34 research outputs found

    Discovery of the cancer stem cell related determinants of radioresistance

    Get PDF
    AbstractTumors are known to be heterogeneous containing a dynamic mixture of phenotypically and functionally different tumor cells. The two concepts attempting to explain the origin of intratumor heterogeneity are the cancer stem cell hypothesis and the clonal evolution model. The stochastic model argues that tumors are biologically homogenous and all cancer cells within the tumor have equal ability to propagate the tumor growth depending on continuing mutations and selective pressure. By contrast, the stem cells model suggests that cancer heterogeneity is due to the hierarchy that originates from a small population of cancer stem cells (CSCs) which are biologically distinct from the bulk tumor and possesses self-renewal, tumorigenic and multilineage potential. Although these two hypotheses have been discussed for a long time as mutually exclusive explanations of tumor heterogeneity, they are easily reconciled serving as a driving force of cancer evolution and diversity. Recent discovery of the cancer cell plasticity and heterogeneity makes the CSC population a moving target that could be hard to track and eradicate. Understanding the signaling mechanisms regulating CSCs during the course of cancer treatment can be indispensable for the optimization of current treatment strategies

    Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor-induced dipeptidase-1 expression and glutathione depletion

    Full text link
    Dexamethasone is widely used as an immunosuppressive therapy and recently as COVID-19 treatment. Here, we demonstrate that dexamethasone sensitizes to ferroptosis, a form of iron-catalyzed necrosis, previously suggested to contribute to diseases such as acute kidney injury, myocardial infarction, and stroke, all of which are triggered by glutathione (GSH) depletion. GSH levels were significantly decreased by dexamethasone. Mechanistically, we identified that dexamethasone up-regulated the GSH metabolism regulating protein dipeptidase-1 (DPEP1) in a glucocorticoid receptor (GR)-dependent manner. DPEP1 knockdown reversed the phenotype of dexamethasone-induced ferroptosis sensitization. Ferroptosis inhibitors, the DPEP1 inhibitor cilastatin, or genetic DPEP1 inactivation reversed the dexamethasone-induced increase in tubular necrosis in freshly isolated renal tubules. Our data indicate that dexamethasone sensitizes to ferroptosis by a GR-mediated increase in DPEP1 expression and GSH depletion. Together, we identified a previously unknown mechanism of glucocorticoid-mediated sensitization to ferroptosis bearing clinical and therapeutic implications

    An epigenetic reprogramming strategy to re-sensitize radioresistant prostate cancer cells

    Get PDF
    Radiotherapy is a mainstay of curative prostate cancer treatment, but risks of recurrence after treatment remain significant in locally advanced disease. Given that tumor relapse can be attributed to a population of cancer stem cells (CSC) that survives radiotherapy, analysis of this cell population might illuminate tactics to personalize treatment. However, this direction remains challenging given the plastic nature of prostate cancers following treatment. We show here that irradiating prostate cancer cells stimulates a durable upregulation of stem cell markers that epigenetically reprogram these cells. In both tumorigenic and radioresistant cell populations, a phenotypic switch occurred during a course of radiotherapy that was associated with stable genetic and epigenetic changes. Specifically, we found that irradiation triggered histone H3 methylation at the promoter of the CSC marker aldehyde dehydrogenase 1A1 (ALDH1A1), stimulating its gene transcription. Inhibiting this methylation event triggered apoptosis, promoted radiosensitization, and hindered tumorigenicity of radioresistant prostate cancer cells. Overall, our results suggest that epigenetic therapies may restore the cytotoxic effects of irradiation in radioresistant CSC populations

    The Role of lncRNAs TAPIR-1 and -2 as Diagnostic Markers and Potential Therapeutic Targets in Prostate Cancer

    Get PDF
    In search of new biomarkers suitable for the diagnosis and treatment of prostate cancer, genome-wide transcriptome sequencing was carried out with tissue specimens from 40 prostate cancer (PCa) and 8 benign prostate hyperplasia patients. We identified two intergenic long non-coding transcripts, located in close genomic proximity, which are highly expressed in PCa. Microarray studies on a larger cohort comprising 155 patients showed a profound diagnostic potential of these transcripts (AUC~0.94), which we designated as tumor associated prostate cancer increased lncRNA (TAPIR-1 and -2). To test their therapeutic potential, knockdown experiments with siRNA were carried out. The knockdown caused an increase in the p53/TP53 tumor suppressor protein level followed by downregulation of a large number of cell cycle- and DNA-damage repair key regulators. Furthermore, in radiation therapy resistant tumor cells, the knockdown leads to a renewed sensitization of these cells to radiation treatment. Accordingly, in a preclinical PCa xenograft model in mice, the systemic application of nanoparticles loaded with siRNA targeting TAPIR-1 significantly reduced tumor growth. These findings point to a crucial role of TAPIR-1 and -2 in PCa

    Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue.</p> <p>Methods</p> <p>A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured <it>in vitro </it>and <it>in vivo </it>in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific <it>in situ </it>hybridization was performed to discriminate between cells of human and murine origin in xenotransplants.</p> <p>Results</p> <p>The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. <it>In vitro </it>and <it>in vivo </it>(subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels <it>in vitro </it>and <it>in vivo</it>, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of the intervertebral disc. Moreover, mouse implanted hydrogels accumulated 5 times more glycosaminoglycans and 50 times more collagen than the <it>in vitro </it>cultured gels, the latter instead releasing equivalent quantities of glycosaminoglycans and collagen into the culture medium. Matrix deposition could be specified by immunohistology for collagen types I and II, and aggrecan and was found only in areas where predominantly cells of human origin were detected by species specific <it>in situ </it>hybridization.</p> <p>Conclusions</p> <p>The data demonstrate that the hydrogels form stable implants capable to contain a specifically functional cell population within a physiological environment.</p

    Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: Identification, Characterization and Clinical Implications

    No full text
    Head and neck squamous cell carcinoma (HNSCC) is the sixth most commonly diagnosed cancer worldwide. Despite advances in the treatment management, locally advanced disease has a poor prognosis, with a 5-year survival rate of approximately 50%. The growth of HNSCC is maintained by a population of cancer stem cells (CSCs) which possess unlimited self-renewal potential and induce tumor regrowth if not completely eliminated by therapy. The population of CSCs is not only a promising target for tumor treatment, but also an important biomarker to identify the patients at risk for therapeutic failure and disease progression. This review aims to provide an overview of the recent pre-clinical and clinical studies on the biology and potential therapeutic implications of HNSCC stem cells

    Differential Responses of Urinary Epinephrine and Norepinephrine to 24-h Shift-Work Stressor in Physicians.

    Get PDF
    Multiple stressors, including 24-h-shifts characterise the working environment of physicians, influencing well-being, health and performance. We aimed to evaluate the effect of the stressor 24-h-shift on the adrenal medullary and sympathoneural system in physicians with the hypothesis that shift work might have different impacts on both systems. Twenty-two physicians collected two 12-h-urine samples ("daytime" and "nighttime") during a 24-h shift ("on-duty") and on a free weekend ("off-duty"), respectively. Urinary excretion rates per m2 body surface area were assessed for the catecholamines epinephrine, norepinephrine and their respective free O-methylated metabolites metanephrine and normetanephrine by LC-MS/MS-analysis. The stressor provoked differential responses of epinephrine and norepinephrine. Epinephrine excretion rates showed significant increases from off to on duty. The largest proportional change (off-duty to on-duty) for epinephrine was observed for nighttime (205%), the increase for daytime was 84%. An increase in norepinephrine from off to on duty was only visible for nighttime collections. For the catecholamine metabolites, normetanephrine paralleled norepinephrine and exhibited an increase in excretion from off to on duty during nighttime collections of 53% whereas there was no change during daytime collections (3%). In conclusion: Whilst the 24-h-shift-work stressor in physicians activates the sympatho-adrenomedullary system, represented by epinephrine, the sympathoneural response through norepinephrine reflects mainly an ambulatory position during working hours

    Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: Identification, Characterization and Clinical Implications

    No full text
    Head and neck squamous cell carcinoma (HNSCC) is the sixth most commonly diagnosed cancer worldwide. Despite advances in the treatment management, locally advanced disease has a poor prognosis, with a 5-year survival rate of approximately 50%. The growth of HNSCC is maintained by a population of cancer stem cells (CSCs) which possess unlimited self-renewal potential and induce tumor regrowth if not completely eliminated by therapy. The population of CSCs is not only a promising target for tumor treatment, but also an important biomarker to identify the patients at risk for therapeutic failure and disease progression. This review aims to provide an overview of the recent pre-clinical and clinical studies on the biology and potential therapeutic implications of HNSCC stem cells

    Network-based analysis of prostate cancer cell lines reveals novel marker gene candidates associated with radioresistance and patient relapse.

    No full text
    Radiation therapy is an important and effective treatment option for prostate cancer, but high-risk patients are prone to relapse due to radioresistance of cancer cells. Molecular mechanisms that contribute to radioresistance are not fully understood. Novel computational strategies are needed to identify radioresistance driver genes from hundreds of gene copy number alterations. We developed a network-based approach based on lasso regression in combination with network propagation for the analysis of prostate cancer cell lines with acquired radioresistance to identify clinically relevant marker genes associated with radioresistance in prostate cancer patients. We analyzed established radioresistant cell lines of the prostate cancer cell lines DU145 and LNCaP and compared their gene copy number and expression profiles to their radiosensitive parental cells. We found that radioresistant DU145 showed much more gene copy number alterations than LNCaP and their gene expression profiles were highly cell line specific. We learned a genome-wide prostate cancer-specific gene regulatory network and quantified impacts of differentially expressed genes with directly underlying copy number alterations on known radioresistance marker genes. This revealed several potential driver candidates involved in the regulation of cancer-relevant processes. Importantly, we found that ten driver candidates from DU145 (ADAMTS9, AKR1B10, CXXC5, FST, FOXL1, GRPR, ITGA2, SOX17, STARD4, VGF) and four from LNCaP (FHL5, LYPLAL1, PAK7, TDRD6) were able to distinguish irradiated prostate cancer patients into early and late relapse groups. Moreover, in-depth in vitro validations for VGF (Neurosecretory protein VGF) showed that siRNA-mediated gene silencing increased the radiosensitivity of DU145 and LNCaP cells. Our computational approach enabled to predict novel radioresistance driver gene candidates. Additional preclinical and clinical studies are required to further validate the role of VGF and other candidate genes as potential biomarkers for the prediction of radiotherapy responses and as potential targets for radiosensitization of prostate cancer

    L1 Cell adhesion molecule confers radioresistance to ovarian cancer and defines a new cancer stem cell population

    Get PDF
    Many solid tumors, including ovarian cancer, contain small populations of cancer stem cells (CSCs). These cells are usually resistant against conventional cancer therapies and play a role in disease recurrence. We demonstrated that the L1 cell adhesion molecule (L1CAM) is a new CSC target in ovarian cancer, triggering radioresistance. Using fluorescence-activated cell sorting, specific cell populations expressing L1CAM alone or in combination with the established CSC marker CD133 were isolated from three ovarian cancer cell lines. Double-positive L1CAM+/CD133+ cells displayed higher spherogenic and clonogenic properties in comparison to L1CAM−/CD133− cells. Furthermore, L1CAM+/CD133+ cells retained highest clonogenic capacity after irradiation and exhibited up-regulation of some CSC-specific genes, enhanced tumor-initiating capacity, self-renewal and higher tumor take rate in nude mice when compared with other cell populations. Superior radioresistance by L1CAM expression was confirmed by deletion of L1CAM using CRISPR-Cas9 technology. Moreover, we found expression signatures associated with epithelial-to-mesenchymal transition phenotype in L1CAM deleted cells. These results indicate that L1CAM in combination with CD133 defines a new cancer cell population of ovarian tumor-initiating cells with the implication of targeting L1CAM as a novel therapeutic approach for ovarian CSCs
    corecore