1,469 research outputs found

    EAP1 regulation of GnRH promoter activity is important for human pubertal timing

    Get PDF
    The initiation of puberty is orchestrated by an augmentation of gonadotropin-releasing hormone (GnRH) secretion from a few thousand hypothalamic neurons. Recent findings have indicated that the neuroendocrine control of puberty may be regulated by a hierarchically organized network of transcriptional factors acting upstream of GnRH. These include enhanced at puberty 1 (EAP1), which contributes to the initiation of female puberty through transactivation of the GnRH promoter. However, no EAP1 mutations have been found in humans with disorders of pubertal timing. We performed whole-exome sequencing in 67 probands and 93 relatives from a large cohort of familial self-limited delayed puberty (DP). Variants were analyzed for rare, potentially pathogenic variants enriched in case versus controls and relevant to the biological control of puberty. We identified one in-frame deletion (Ala221del) and one rare missense variant (Asn770His) in EAP1 in two unrelated families; these variants were highly conserved and potentially pathogenic. Expression studies revealed Eap1 mRNA abundance in peri-pubertal mouse hypothalamus. EAP1 binding to the GnRH1 promoter increased in monkey hypothalamus at the onset of puberty as determined by chromatin immunoprecipitation. Using a luciferase reporter assay, EAP1 mutants showed a reduced ability to trans-activate the GnRH promoter compared to wild-type EAP1, due to reduced protein levels caused by the Ala221del mutation and subcellular mislocation caused by the Asn770His mutation, as revealed by western blot and immunofluorescence, respectively. In conclusion, we have identified the first EAP1 mutations leading to reduced GnRH transcriptional activity resulting in a phenotype of self-limited DP.Peer reviewe

    Uncovering Networks from Genome-Wide Association Studies via Circular Genomic Permutation

    Get PDF
    Genome-wide association studies (GWAS) aim to detect single nucleotide polymorphisms (SNP) associated with trait variation. However, due to the large number of tests, standard analysis techniques impose highly stringent significance thresholds, leaving potentially associated SNPs undetected, and much of the trait genetic variation unexplained. Pathway- and network-based methodologies applied to GWAS aim to detect associations missed by standard single-marker approaches. The complex and non-random architecture of the genome makes it a challenge to derive an appropriate testing framework for such methodologies. We developed a rapid and simple permutation approach that uses GWAS SNP association results to establish the significance of pathway associations while accounting for the linkage disequilibrium structure of SNPs and the clustering of functionally related elements in the genome. All SNPs used in the GWAS are placed in a “circular genome” according to their location. Then the complete set of SNP association P values are permuted by rotation with respect to the genomic locations of the SNPs. Once these “simulated” P values are assigned, the joint gene P values are calculated using Fisher’s combination test, and the association of pathways is tested using the hypergeometric test. The circular genomic permutation approach was applied to a human genome-wide association dataset. The data consists of 719 individuals from the ORCADES study genotyped for ∌300,000 SNPs and measured for 51 traits ranging from physical to biochemical measurements. KEGG pathways (n = 225) were used as the sets of pathways to be tested. Our results demonstrate that the circular genomic permutations provide robust association P values. The non-permuted hypergeometric analysis generates ∌1400 pathway-trait combination results with an association P value more significant than P ≀ 0.05, whereas applying circular genomic permutation reduces the number of significant results to a more credible 40% of that value. The circular permutation software (“genomicper”) is available as an R package at http://cran.r-project.org/

    Contributions of Function-Altering Variants in Genes Implicated in Pubertal Timing and Body Mass for Self-Limited Delayed Puberty

    Get PDF
    Context: Self-limited delayed puberty (DP) is often associated with a delay in physical maturation, but although highly heritable the causal genetic factors remain elusive. Genome-wide association studies of the timing of puberty have identified multiple loci for age at menarche in females and voice break in males, particularly in pathways controlling energy balance. Objective/Main Outcome Measures: We sought to assess the contribution of rare variants in such genes to the phenotype of familial DP. Design/Patients: We performed whole-exome sequencing in 67 pedigrees (125 individuals with DP and 35 unaffected controls) from our unique cohort of familial self-limited DP. Using a whole-exome sequencing filtering pipeline one candidate gene [fat mass and obesity-associated gene (FTO)] was identified. In silico, in vitro, and mouse model studies were performed to investigate the pathogenicity of FTO variants and timing of puberty in FTO+/- mice. Results: We identified potentially pathogenic, rare variants in genes in linkage disequilibrium with genome-wide association studies of age at menarche loci in 283 genes. Of these, five genes were implicated in the control of body mass. After filtering for segregation with trait, one candidate, FTO, was retained. Two FTO variants, found in 14 affected individuals from three families, were also associated with leanness in these patients with DP. One variant (p. Leu44Val) demonstrated altered demethylation activity of the mutant protein in vitro. Fto(+/-) mice displayed a significantly delayed timing of pubertal onset (P <0.05). Conclusions: Mutations in genes implicated in body mass and timing of puberty in the general population may contribute to the pathogenesis of self-limited DP.Peer reviewe

    HS6ST1 Insufficiency Causes Self-Limited Delayed Puberty in Contrast With Other GnRH Deficiency Genes

    Get PDF
    Context: Self-limited delayed puberty (DP) segregates in an autosomal-dominant pattern, but the genetic basis is largely unknown. Although DP is sometimes seen in relatives of patients with hypogonadotropic hypogonadism (HH), mutations in genes known to cause HH that segregate with the trait of familial self-limited DP have not yet been identified. Objective: To assess the contribution of mutations in genes known to cause HH to the phenotype of self-limited DP. Design, Patients, and Setting: We performed whole-exome sequencing in 67 probands and 93 relatives from a large cohort of familial self-limited DP, validated the pathogenicity of the identified gene variant in vitro, and examined the tissue expression and functional requirement of the mouse homolog in vivo. Results: A potentially pathogenic gene variant segregating with DP was identified in 1 of 28 known HH genes examined. This pathogenic variant occurred in HS6ST1 in one pedigree and segregated with the trait in the six affected members with heterozygous transmission (P = 3.01 x 10 -5 ). Biochemical analysis showed that this mutation reduced sulfotransferase activity in vitro. Hs6st1 mRNA was expressed in peripubertal wild-type mouse hypothalamus. GnRH neuron counts were similar in Hs6st1 (+/-) and Hs6st1(+/+) mice, but vaginal opening was delayed in Hs6st1(+/-) mice despite normal postnatal growth. Conclusions: We have linked a deleterious mutation in HS6ST1 to familial self-limited DP and show that heterozygous Hs6st1 loss causes DP in mice. In this study, the observed overlap in potentially pathogenic mutations contributing to the phenotypes of self-limited DP and HH was limited to this one gene.Peer reviewe

    Dise?o y construcci?n del edificio de vivienda multifamiliar Las Cumbres

    Get PDF
    El proyecto de tesis ?Dise?o y construcci?n del edificio de vivienda multifamiliar Las Cumbres? consta de 20 pisos, 320 departamentos y tiene una duraci?n de 22 meses, es un proyecto que se plantea ejecutar por primera vez en la ciudad de Lima. El prop?sito de la presente tesis es desarrollar la gesti?n del proyecto de acuerdo a la gu?a del PMBOK 6ta edici?n, de tal forma que podamos obtener informaci?n?n relevante de c?mo gestionar proyectos multifamiliares en Lima ,aplicarlos a proyectos reales y tener ?xito en ellos. En la actualidad para que un proyecto pueda tener ?xito tiene que haber una planificaci?n que contemple las 10 ?reas de conocimiento de la Gu?a PMBOK como son: Plan de gesti?n del alcance, de los plazos, de los costes, de calidad, de recursos, de comunicaciones, de riesgos, de interesados, de adquisiciones e integraci?n de todas la ?reas, si solo nos enfocamos en alcance, costo y tiempo, podr?amos llegar a fracasar y dejar de trabajar factores cr?ticos de ?xito. El sector de la construcci?n en el Per? es un motor de la econom?a y reacciona de manera inmediata con el crecimiento y es generador de empleo, estando en un mercado cada vez mas competitivo resulta imprescindible para las empresas implementar la gesti?n de proyectos para asegurar en mayor medida el ?xito de las estrategias. Adem?s, ?sta tesis se desarroll? contando con un equipo interdisciplinario y as? contribuy? a analizar desde puntos de vista diferentes, enriqueciendo a?n m?s el documento

    Characterisation of Genome-Wide Association Epistasis Signals for Serum Uric Acid in Human Population Isolates

    Get PDF
    Genome-wide association (GWA) studies have identified a number of loci underlying variation in human serum uric acid (SUA) levels with the SLC2A9 gene having the largest effect identified so far. Gene-gene interactions (epistasis) are largely unexplored in these GWA studies. We performed a full pair-wise genome scan in the Italian MICROS population (n = 1201) to characterise epistasis signals in SUA levels. In the resultant epistasis profile, no SNP pairs reached the Bonferroni adjusted threshold for the pair-wise genome-wide significance. However, SLC2A9 was found interacting with multiple loci across the genome, with NFIA - SLC2A9 and SLC2A9 - ESRRAP2 being significant based on a threshold derived for interactions between GWA significant SNPs and the genome and jointly explaining 8.0% of the phenotypic variance in SUA levels (3.4% by interaction components). Epistasis signal replication in a CROATIAN population (n = 1772) was limited at the SNP level but improved dramatically at the gene ontology level. In addition, gene ontology terms enriched by the epistasis signals in each population support links between SUA levels and neurological disorders. We conclude that GWA epistasis analysis is useful despite relatively low power in small isolated populations

    LGR4 deficiency results in delayed puberty through impaired Wnt/beta-catenin signaling

    Get PDF
    The initiation of puberty is driven by an upsurge in hypothalamic gonadotropin-releasing hormone (GnRH) secretion. In turn, GnRH secretion upsurge depends on the development of a complex GnRH neuroendocrine network during embryonic life. Although delayed puberty (DP) affects up to 2% of the population, is highly heritable, and is associated with adverse health outcomes, the genes underlying DP remain largely unknown. We aimed to discover regulators by whole-exome sequencing of 160 individuals of 67 multigenerational families in our large, accurately phenotyped DP cohort. LGR4 was the only gene remaining after analysis that was significantly enriched for potentially pathogenic, rare variants in 6 probands, Expression analysis identified specific Lgr4 expression at the site of GnRH neuron development. LGR4 mutant proteins showed impaired Wnt/beta-catenin signaling, owing to defective protein expression, trafficking, and degradation. Mice deficient in Lgr4 had significantly delayed onset of puberty and fewer GnRH neurons compared with WT, whereas lgr4 knockdown in zebrafish embryos prevented formation and migration of GnRH neurons. Further, genetic lineage tracing showed strong Lgr4-mediated Wnt/beta-catenin signaling pathway activation during GnRH neuron development. In conclusion, our results show that LGR4 deficiency impairs Wnt/beta-catenin signaling with observed defects in GnRH neuron development, resulting in a DP phenotype.Peer reviewe

    IFNG +874T/A polymorphism is not associated with American tegumentary leishmaniasis susceptibility but can influence Leishmania induced IFN-Îł production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon-gamma is a key cytokine in the protective responses against intracellular pathogens. A single nucleotide polymorphism (SNP) located in the first intron of the human IFN-γ gene can putatively influence the secretion of cytokine with an impact on infection outcome as demonstrated for tuberculosis and other complex diseases. Our aim was to investigate the putative association of IFNG+874T/A SNP with American tegumentary leishmaniasis (ATL) and also the influence of this SNP in the secretion of IFN-γ <it>in vitro</it>.</p> <p>Methods</p> <p>Brazilian ATL patients (78 cutaneous, CL, and 58 mucosal leishmaniasis, ML) and 609 healthy volunteers were evaluated. The genotype of +874 region in the IFN-γ gene was carried out by Amplification Refractory Mutational System (ARMS-PCR). <it>Leishmania</it>-induced IFN-γ production on peripheral blood mononuclear cell (PBMC) culture supernatants was assessed by ELISA.</p> <p>Results</p> <p>There are no differences between +874T/A SNP frequency in cases and controls or in ML versus CL patients. Cutaneous leishmaniasis cases exhibiting AA genotype produced lower levels of IFN-γ than TA/TT genotypes. In mucosal cases, high and low IFN-γ producers were clearly demonstrated but no differences in the cytokine production was observed among the IFNG +874T or A carriers.</p> <p>Conclusion</p> <p>Our results suggest that +874T/A polymorphism was not associated with either susceptibility or severity to leishmaniasis. Despite this, IFNG +874T/A SNP could be involved in the pathogenesis of leishmaniasis by influencing the amount of cytokine released by CL patients, although it could not prevent disease development. On the other hand, it is possible that in ML cases, other potential polymorphic regulatory genes such as TNF-α and IL-10 are also involved thus interfering with IFN-γ secretion.</p
    • 

    corecore