6 research outputs found

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Studies Regarding the Antibacterial Effect of Plant Extracts Obtained from <i>Epilobium parviflorum</i> Schreb

    No full text
    The present study was carried out to develop an experimental endodontic irrigant solution based on plant extracts obtained from Epilobium parviflorum Schreb. that largely replenish the properties of the usual antiseptics used in dentistry. Background: This study investigated the phytochemical contents of plant extracts obtained from Epilobium parviflorum Schreb. and their potential antibacterial activity. Methods: Identification and quantification of biologically active compounds were made by UV field photo spectrometry, adapting the Folin-Ciocalteu test method. Antibacterial activity was tested on pathological bacterial cultures collected from tooth with endodontic infections using a modified Kirby-Bauer diffuse metric method. Results: Polyphenols and flavonoids were present in all plant extracts; the hydroalcoholic extract had the highest amount of polyphenols—17.44 pyrogallol equivalent (Eq Pir)/mL and flavonoids—3.13 quercetin equivalent (Eq Qr)/mL. Plant extracts had antibacterial activity among the tested bacterial species with the following inhibition diameter: White Staphylococcus (16.5 mm), Streptococcus mitis (25 mm), Streptococcus sanguis (27 mm), Enterococcus faecalis (10 mm). Conclusions: All plant extracts contain polyphenols and flavonoids; the antibacterial activity was in direct ratio with the amount of the bioactive compounds

    Development of New Collagen/Clay Composite Biomaterials

    No full text
    The fabrication of collagen-based biomaterials for skin regeneration offers various challenges for tissue engineers. The purpose of this study was to obtain a novel series of composite biomaterials based on collagen and several types of clays. In order to investigate the influence of clay type on drug release behavior, the obtained collagen-based composite materials were further loaded with gentamicin. Physiochemical and biological analyses were performed to analyze the obtained nanocomposite materials after nanoclay embedding. Infrared spectra confirmed the inclusion of clay in the collagen polymeric matrix without any denaturation of triple helical conformation. All the composite samples revealed a slight change in the 2-theta values pointing toward a homogenous distribution of clay layers inside the collagen matrix with the obtaining of mainly intercalated collagen-clay structures, according X-ray diffraction analyses. The porosity of collagen/clay composite biomaterials varied depending on clay nanoparticles sort. Thermo-mechanical analyses indicated enhanced thermal and mechanical features for collagen composites as compared with neat type II collagen matrix. Biodegradation findings were supported by swelling studies, which indicated a more crosslinked structure due additional H bonding brought on by nanoclays. The biology tests demonstrated the influence of clay type on cellular viability but also on the antimicrobial behavior of composite scaffolds. All nanocomposite samples presented a delayed gentamicin release when compared with the collagen-gentamicin sample. The obtained results highlighted the importance of clay type selection as this affects the performances of the collagen-based composites as promising biomaterials for future applications in the biomedical field

    Proceedings Of The 23Rd Paediatric Rheumatology European Society Congress: Part Two

    No full text
    PubMe

    The 12th Edition of the Scientific Days of the National Institute for Infectious Diseases “Prof. Dr. Matei Bals” and the 12th National Infectious Diseases Conference

    No full text
    corecore