70 research outputs found

    Complete genome sequences of six measles virus strains

    Get PDF
    Genetic characterization of wild-type measles virus (MV) strains is a critical component of measles surveillance and molecular epidemiology. We have obtained complete genome sequences of six MV strains belonging to different genotypes, using random-primed next generation sequencing

    Identification and Characterization of Two Novel Viruses in Ocular Infections in Reindeer

    Get PDF
    A thorough understanding of virus diversity in wildlife provides epidemiological baseline information about pathogens. In this study, eye swab samples were obtained from semi-domesticated reindeer (Rangifer tarandus tarandus) in Norway during an outbreak of infectious eye disease, possibly a very early stage of infectious keratoconjunctivitis (IKC). Large scale molecular virus screening, based on host nucleic acid depletion, sequence-independen

    Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) has rapidly become a major global health problem, and public health surveillance is crucial to monitor and prevent virus spread. Wastewater-based epidemiology has been proposed as an addition to disease-based surveillance because virus is shed in the feces of ≈40% of infected persons. We used next-generation sequencing of sewage samples to evaluate the diversity of SARS-CoV-2 at the community level in the Netherlands and Belgium. Phylogenetic analysis revealed the presence of the most prevalent clades (19A, 20A, and 20B) and clustering of sewage samples with clinical samples from the same region. We distinguished multiple clades within a single sewage sample by using low-frequency variant analysis. In addition, several novel mutations in the SARS-CoV-2 genome were detected. Our results illustrate how wastewater can be used to investigate the diversity of SARS-CoV-2 viruses circulating in a community and identify new outbreaks

    Genomic monitoring to understand the emergence and spread of Usutu virus in the Netherlands, 2016-2018

    Get PDF
    Usutu virus (USUV) is a mosquito-borne flavivirus circulating in Western Europe that causes die-offs of mainly common blackbirds (Turdus merula). In the Netherlands, USUV was first detected in 2016, when it was identified as the likely cause of an outbreak in birds. In this study, dead blackbirds were collected, screened for the presence of USUV and submitted to Nanopore-based sequencing. Genomic sequence

    Comparison of sequencing methods and data processing pipelines for whole genome sequencing and minority single nucleotide variant (mSNV) analysis during an influenza A/H5N8 outbreak

    Get PDF
    As high-throughput sequencing technologies are becoming more widely adopted for analysing pathogens in disease outbreaks there needs to be assurance that the different sequencing technologies and approaches to data analysis will yield reliable and comparable results. Conversely, understanding where agreement cannot be achieved provides insight into the limitations of these approaches and also allows efforts to be focused on areas of the process that need improvement. This manuscript describes the next-generation sequencing of three closely related viruses, each analysed using different sequencing strategies, sequencing instruments and data processing pipelines. In order to determine the comparability of consensus sequences and minority (sub-consensus) single nucleotide variant (mSNV) identification, the biological samples, the sequence data from 3 sequencing platforms and the *.bam quality-trimmed alignment files of raw data of 3 influenza A/H5N8 viruses were shared. This analysis demonstrated that variation in the final result could be attributed to all stages in the process, but the most critical were the well-known homopolymer errors introduced by 454 sequencing, and the alignment processes in the different data processing pipelines which affected the consistency of mSNV detection. However, homopolymer errors aside, there was generally a good agreement between consensus sequences that were obtained for all combinations of sequencing platforms and data processing pipelines. Nevertheless, minority variant analysis will need a different level of careful standardization and awareness about the possible limitations, as shown in this study

    Novel B19-like parvovirus in the brain of a harbor seal

    Get PDF
    Using random PCR in combination with next-generation sequencing, a novel parvovirus was detected in the brain of a young harbor seal (Phoca vitulina) with chronic non-suppurative meningo-encephalitis that was rehabilitated at the Seal Rehabilitation and Research Centre (SRRC) in the Netherlands. In addition, two novel viruses belonging to the family Anelloviridae were detected in the lungs of this animal. Phylogenetic analysis of the coding sequence of the novel parvovirus, tentatively called Seal parvovirus, indicated that this virus belonged to the genus Erythrovirus , to which human parvovirus B19 also belongs. Although no other seals with similar signs were rehabilitated in SRRC in recent years, a prevalence study of tissues of seals from the same area collected in the period 2008-2012 indicated that the Seal parvovirus has circulated in the

    Norovirus outbreak in a natural playground: A One Health approach

    Get PDF
    Norovirus constitutes the most frequently identified infectious cause of disease outbreaks associated with untreated recreational water. When investigating outbreaks related to surface water, a One Health approach is insightful. Historically, there has been a focus on potential contamination of recreational water by bird droppings and a recent publication demonstrating human noroviruses in bird faeces suggested this should be investigated in future water-related norovirus outbreaks. Here, we describe a One Health approach investigating a norovirus outbreak in a natural playground. On social media, a large amount of waterfowl were reported to defecate near these playground premises leading to speculations about their potential involvement. Surface water, as well as human and bird faecal specimens, was tested for human noroviruses. Norovirus was found to be the most likely cause of the outbreak but there was no evidence for transmission via waterfowl. Cases had become known on social media prior to notification to the public health service underscoring the potential of online media as an early warning system. In view of known risk factors, advice was given for future outbreak investigations and natural playgroun

    Metagenomic survey for viruses in Western Arctic caribou, Alaska, through iterative assembly of taxonomic units

    Get PDF
    Pathogen surveillance in animals does not provide a sufficient level of vigilance because it is generally confined to surveillance of pathogens with known economic impact in domestic animals and practically nonexistent in wildlife species. As most (re-)emerging viral infections originate from animal sources, it is important to obtain insight into viral pathogens present in the wildlife reservoir from a public health perspective. When monitoring living, free-ranging wildlife for viruses, sample collection can be challenging and availability of nucleic acids isolated from samples is often limited. The development of viral metagenomics platforms allows a more comprehensive

    Metavirome sequencing to evaluate norovirus diversity in sewage and related bioaccumulated oysters

    Get PDF
    Metagenomic sequencing is a promising method to determine the virus diversity in environmental samples such as sewage or shellfish. However, to identify the short RNA genomes of human enteric viruses among the large diversity of nucleic acids present in such complex matrices, method optimization is still needed. This work presents methodological developments focused on norovirus, a small ssRNA non-enveloped virus known as the major cause of human gastroenteritis worldwide and frequently present in human excreta and sewage. Different elution protocols were applied and Illumina MiSeq technology were use

    COVID-19 in health-care workers in three hospitals in the south of the Netherlands:A cross-sectional study

    Get PDF
    Background: 10 days after the first reported case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the Netherlands (on Feb 27, 2020), 55 (4%) of 1497 health-care workers in nine hospitals located in the south of the Netherlands had tested positive for SARS-CoV-2 RNA. We aimed to gain insight in possible sources of infection in health-care workers. Methods: We did a cross-sectional study at three of the nine hospitals located in the south of the Netherlands. We screened health-care workers at the participating hospitals for SARS-CoV-2 infection, based on clinical symptoms (fever or mild respiratory symptoms) in the 10 days before screening. We obtained epidemiological data through structured interviews with health-care workers and combined this information with data from whole-genome sequencing of SARS-CoV-2 in clinical samples taken from health-care workers and patients. We did an in-depth analysis of sources and modes of transmission of SARS-CoV-2 in health-care workers and patients. Findings: Between March 2 and March 12, 2020, 1796 (15%) of 12 022 health-care workers were screened, of whom 96 (5%) tested positive for SARS-CoV-2. We obtained complete and near-complete genome sequences from 50 health-care workers and ten patients. Most sequences were grouped in three clusters, with two clusters showing local circulation within the region. The noted patterns were consistent with multiple introductions into the hospitals through community-acquired infections and local amplification in the community. Interpretation: Although direct transmission in the hospitals cannot be ruled out, our data do not support widespread nosocomial transmission as the source of infection in patients or health-care workers. Funding: EU Horizon 2020 (RECoVer, VEO, and the European Joint Programme One Health METASTAVA), and the National Institute of Allergy and Infectious Diseases, National Institutes of Health
    corecore