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Since its discovery, severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has caused 

>100 million confi rmed cases of coronavirus disease 
(COVID-19). The global effects of SARS-CoV-2 and 
the need to learn more about its origin and epide-
miology have resulted in the sequencing of >416,000 
genomes as of January 2021 (1). This work has en-
abled the identifi cation of groups of viruses that, on 

the basis of their genetic diversity, can be associat-
ed with geographic and temporal patterns of virus 
spread (2). Nextstrain (https://nextstrain.org) cur-
rently divides SARS-CoV-2 diversity into 12 major 
global clades (19A, 19B, and 20A–20J), on the basis 
of high prevalence, signature mutations, and geo-
graphic spread (3).

Although SARS-CoV-2 primarily affects respi-
ratory tract tissues, it can also replicate in the gas-
trointestinal tract, as evidenced by in vitro infection 
of enteroids (4), presence of viral proteins in gastro-
intestinal epithelium biopsy specimens (5), and de-
tection of infectious virus in stool samples (6). Viral 
RNA is shed in the feces of ≈40% of infected persons, 
often for longer periods than the virus can be detect-
ed in nasal swab specimens. SARS-CoV-2 RNA has 
been detected in urine occasionally (<5% of infected 
patients) (7–9).

Because of the rapid spread of SARS-CoV-2, in-
dividual screening of clinical cases and study of viral 
diversity on a population level are challenging. Vari-
ous reports have demonstrated that enteric and respi-
ratory viruses can be detected in wastewater (10–18). 
This fi nding has led to the recognition of wastewater-
based epidemiology as a potentially valuable tool to 
assess the spread of the disease at a community level. 
Recently, the Water Research Institute in the Nether-
lands and other groups have demonstrated tempo-
ral correlations between SARS-CoV-2 RNA titers in 
sewage and the number of reported cases in a city or 
county when >26 gene copies per liter could be detect-
ed (14,19–21). Therefore, sewage testing is currently 
considered globally to be an adjunct to patient-based 
surveillance and demonstrates promise as an early 
warning indicator of increasing virus circulation.
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Severe	acute	respiratory	syndrome	coronavirus	2	(SARS-
CoV-2)	has	rapidly	become	a	major	global	health	problem,	
and	public	health	surveillance	is	crucial	to	monitor	and	pre-
vent	 virus	 spread.	 Wastewater-based	 epidemiology	 has	
been	 proposed	 as	 an	 addition	 to	 disease-based	 surveil-
lance	because	virus	is	shed	in	the	feces	of	≈40%	of	infect-
ed	persons.	We	used	next-generation	sequencing	of	sew-
age	samples	 to	evaluate	 the	diversity	of	SARS-CoV-2	at	
the	community	level	in	the	Netherlands	and	Belgium.	Phy-
logenetic	analysis	revealed	the	presence	of	the	most	prev-
alent	clades	(19A,	20A,	and	20B)	and	clustering	of	sew-
age samples with clinical samples from the same region. 
We	distinguished	multiple	clades	within	a	single	sewage	
sample	by	using	 low-frequency	variant	analysis.	 In	addi-
tion,	several	novel	mutations	in	the	SARS-CoV-2	genome	
were detected. Our results illustrate how wastewater can 
be	used	to	investigate	the	diversity	of	SARS-CoV-2	viruses	
circulating	in	a	community	and	identify	new	outbreaks.
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Enhanced surveillance is a key pillar of the cur-
rent strategy to control the spread of SARS-CoV-2 
and includes frequently testing mildly symptomatic 
persons, investigating infection clusters to identify 
possible common exposures, and monitoring hospital 
admission rates. Whole-genome sequencing of SARS-
CoV-2 from clinical samples has been adopted as an 
additional tool to identify clusters. Particularly in 
geographic areas with minimal virus circulation, se-
quencing can help identify possible sources, provided 
that sufficient background sequencing has been per-
formed. So far, little work has been done to correlate 
SARS-CoV-2 diversity in sewage samples with di-
versity in patients (22,23). We used next-generation 
sequencing (NGS) of SARS-CoV-2 from wastewater 
samples to assess whether these samples reflect the 
diversity of SARS-CoV-2 circulating within the popu-
lation of the Netherlands and Belgium.

Methods

Sample Preparation
Wastewater specimens were collected as 24-h flow-
dependent composite samples and processed as 
previously described (14). Debris of 100–200 mL of 
sewage samples was pelleted and the supernatant 
was concentrated by using 100 kDa Centricon ul-
trafilters (Millipore Sigma, https://www.emdmilli-
pore.com); in vitro–transcribed dengue virus type-2 
RNA was added as an internal extraction control. 
RNA was extracted by using the Nuclisens kit (bio-
Mérieux, https://www.biomerieux.com) and King-
Fisher purification system (Thermo Fisher Scientific, 
https://www.thermofisher.com) (14). RNA was 
screened by quantitative reverse transcription PCR 
(qRT-PCR) with 5 primer–probe sets targeting the 
SARS-CoV-2 nucleocapsid (N) gene (N1–N3) (24), 
envelope (E) gene for all sarbecoviruses (25), and the 
internal control.

NGS
We performed SARS-CoV-2–specific multiplex PCR 
for nanopore sequencing as described previously 
(26). Primers for 89 overlapping amplicons spanning 
the genome were used in 2 PCR pools. Libraries were 
generated by using the Oxford Nanopore native bar-
code kits (Oxford Nanopore Technologies, https://
nanoporetech.com) and sequenced on a R9.4 flow cell.

Illumina sequencing was performed as described 
previously (27). Amplicons were generated by the 
multiplex PCR described previously. Amplicons 
were purified with 0.8X AMPure XP beads (Beck-
man Coulter, https://www.beckmancoulter.com) 

and 100 ng of DNA was converted into paired-end 
Illumina sequencing libraries by using the KAPA 
HyperPlus library preparation kit (Roche, https://
www.roche.com). We used the KAPA Unique Dual-
Indexed Adapters Kit (Roche) to enable subsequent 
sequencing of multiple libraries in a single Illumina 
MiSeq version 3 flowcell (2 × 300 cycles) (Illumina, 
https://www.illumina.com).

Nanopore Sequence Analysis
Raw sequence data were processed as previously de-
scribed (26). We used a snakemake script to demul-
tiplex fastq raw reads by using Porechop (https://
github.com/rrwick/Porechop), to trim primers by 
using Cutadapt (28), and to perform a reference-based 
alignment by using minimap2 to GISAID sequence 
EPI_ISL_412973 (https://www.gisaid.org). The run 
was monitored by using RAMPART (https://artic-
network.github.io/rampart). The consensus genome 
was extracted by using 2 analyses for which posi-
tions with a coverage <10X or <30X were replaced 
with an N. We confirmed mutations in the genome by 
manually checking the alignment in Ugene (29) and 
resolved homopolymeric regions by consulting refer-
ence genomes. On the basis of previous studies (30), 
we considered mutations with >30X coverage high 
quality, whereas mutations >10X and <30X coverage 
were considered low quality.

Illumina Sequence Analysis
We used a customized Galaxy workflow (31) for all 
processing, reference-based alignment, and variant 
analysis. Raw sequencing reads were filtered by using 
Fastp (32) to remove adaptor contamination, ambigu-
ous bases, low quality reads (Phred score <30), and 
fragments <50 nt. Reads were mapped against GI-
SAID sequence EPI_ISL_412973 by using the default 
settings of BWA-MEM (H. Li, unpub. data, https://
arxiv.org/abs/1303.3997). Reads were realigned by 
using the leftalign utility from FreeBayes (E. Garri-
son, unpub. data, https://arxiv.org/abs/1207.3907). 
All reads with mapping scores of <30 were discarded. 
Consensus sequences and variants were generated by 
using iVar (33). Final consensus sequences (frequency 
>50%) were constructed by using all mapped reads 
with a coverage of >5X and Phred score of >30. For 
detection of low-frequency variants (LFVs), we used 
parameters as follows: minimum coverage of 50X, 
Phred score >30, and a minimum frequency thresh-
old of 10%. Variant calling was confirmed by manual 
inspection of the aligned reads in Ugene (29). Variant 
positions are given with respect to the Wuhan-Hu-1 
strain (MN908947) (34). We uploaded all consensus 
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sequences with coverage >50% to GISAID (accession 
nos. EPI_ISL_539300–25).

Phylogenetic Analysis
The first dataset included all full-length SARS-CoV-2 
genomes from the Netherlands (1,544 genomes) and 
Belgium (888 genomes) from GISAID as of July 8, 2020. 
The second dataset was a subsample representative 
of the global diversity of all SARS-CoV-2 sequences 
in GISAID as of June 1, 2020. This global dataset con-
tained 2,552 subsampled sequences (full length with 
Ns <5%) to include 1 unique genome per country or 
state per week. We aligned sequences with >75% ge-
nome coverage by using MAFFT (https://mafft.cbrc.
jp/alignment/server) and inferred maximum-likeli-
hood trees by using the best predicted models general 
time-reversible plus F plus R3 (global subsample) and 
general time-reversible plus F plus R2 (Netherlands–
Belgium dataset) and bootstrap with 1,000 replicates. 
Trees were visualized by using Figtree version 1.4.4 
(http://tree.bio.ed.ac.uk/software/figtree). Clades 
were assigned by using the Nextclade tool.

Results

Correlation between qRT-PCR and Percentage  
of Genome Recovered
Previously, sewage samples collected from 6 loca-
tions in the Netherlands (and Schiphol Airport) were 
tested by qRT-PCR to investigate the levels of SARS-
CoV-2 RNA (14). To further investigate the genetic 
diversity of SARS-CoV-2, we subjected 55 wastewa-
ter samples obtained from 13 locations in the Neth-
erlands (48 samples) and 7 locations in Belgium (7 
samples) with cycle threshold (Ct) values of <36 to 
whole-genome sequencing by using nanopore tech-
nology. The wastewater treatment plants in the Neth-
erlands served ≈200,000–980,000 inhabitants; Schi-
phol was estimated to serve 54,000 persons (14). The 
samples covered a period of 70 days (March 25–June 
3, 2020); of all 55 samples, 2 (Franeker-92719 and Am-
sterdamWest-92852) were sequenced by nanopore 
twice. Of the 55 samples, 24 were also sequenced by 
Illumina (Table 1).

We used 4 primer–probe sets targeting the N 
(N1–N3) genes and E gene to evaluate the concen-
tration of SARS-CoV-2 in sewage samples (Table 1) 
(14). The percentage of the genome covered by the 
assembly of nanopore reads (>10X coverage) ranged 
from 0% to 99.2%. We found an inverse sigmoidal 
correlation between the percentage of the genome 
assembled from nanopore sequencing reads and the 
N and E gene Ct values (Figure 1). The Ct values at 

which half of the genome could be obtained were 34.6 
for N1, 33.8 for N2, 33.2 for N3, and 32.5 for E. No 
correlation was observed between Ct values and the 
percentage of the genome assembled from Illumina 
reads (Appendix Figure 1, https://wwwnc.cdc.gov/
EID/article/27/5/20-4410-App1.pdf).

Consensus Sequences
We performed phylogenetic analysis to assess wheth-
er consensus sequences from sewage could be associ-
ated with clinical samples from the same region. A 
total of 22 genomes (20 from nanopore and 2 from 
Illumina runs) with a coverage >75% of the genome 
were obtained from 20 samples. We used these se-
quences to infer a maximum-likelihood tree using all 
sequences from the Netherlands and Belgium avail-
able in GISAID and a maximum-likelihood tree us-
ing a subset representative of the global diversity of 
SARS-CoV-2 in GISAID. In general, the sequences 
from the Netherlands and Belgium grouped into 5 
clades (Figure 2, panel A), and most of the sequences 
belonged to clade 20A (52.0% for the Netherlands and 
47.7% for Belgium). The clades 19B and 20C were less 
prevalent; 8.9% of sequences from the Netherlands 
belonged to 19B and 1.2% to 20C, whereas 10.4% of 
Belgium sequences belonged to 19B and 0.3% to 20C. 
Both trees showed that sewage samples grouped 
within clades 19A, 20A, and 20B (Figure 2). Samples 
Franeker-92719 and HeeswijkDinther-92499 clustered 
with sequences isolated from patients from the same 
region (Figure 2, panel A), indicating that sewage 
samples can be linked to specific outbreaks. Includ-
ed in the phylogenetic trees were 2 samples with 2 
consensus sequences (AmsterdamWest-92852 and 
Franeker-92719), which demonstrated 2-mutation 
differences between consensus sequences of the same 
sample (Appendix Table 1). Despite this discrepan-
cy, consensus sequences from the same sample clus-
tered within the same clade (Appendix Figures 2, 3). 
Some sequences clustered close to the root of the tree, 
probably because of the presence of multiple strains 
within 1 sample, which resulted in a combination of 
mutations in their consensus sequences.

To associate samples with a particular clade or 
cluster, we compared all consensus sequences, in-
cluding partial sequences, with the Wuhan-Hu-1 
reference isolate. A total of 145 single-nucleotide 
polymorphisms (SNPs) were detected in our dataset 
(Appendix Table 1). Of these, 24 SNPs were detected 
in >1 sequence. We also detected SNPs in the Nether-
lands sewage sequences with a geographic regional 
signal, which were present in the Netherlands clinical 
samples at much higher frequencies than in global or 
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Belgium clinical samples, such as T514C and C1594T 
(Appendix Table 2).

Finding clade-defining mutations in the consen-
sus sequence suggests the dominance of a certain 

 
Table 1. Overview	of	SARS-CoV-2	wastewater	samples	sequenced	during	study	of	circulation	and	diversity	through	community	
wastewater sequencing, the Netherlands and Belgium* 
Sample 
no. 

Sample 
ID Date Country Sampling location 

Target	Ct† 
 

Coverage,	% 
N1 N2 N3 E Nanopore Illumina 

1 92499 2020	Mar	25 Netherlands Heeswijk-Dinther 32.9 32.1 30.7 30.8  94.4 ND 
2 92502 2020	Mar	25 Netherlands Apeldoorn 36.6 34.9 33.2 33.3  74.9 19.4 
3 92503 2020	Mar	25 Netherlands Amersfoort 34.9 33.1 31.8 32.1  87.8 ND 
4 92504 2020	Mar	25 Netherlands Utrecht 31.8 30.9 29.8 29.9  95.2 ND 
5 92505 2020	Mar	25 Netherlands Utrecht	Overvecht 32.3 31.1 30.1 30.1  92.4 ND 
6 92506 2020	Mar	25 Netherlands Schiphol 32.7 32.0 30.8 30.7  92.2 65.6 
7 92508 2020	Mar	25 Netherlands Amsterdam	West 31.8 30.7 29.7 29.9  97.0 ND 
8 92509 2020	Mar	25 Netherlands Tilburg 33.0 32.2 31.2 31.0  78.8 65.5 
9 92719 2020	Mar	30 Netherlands Franeker 31.8 30.8 31.2 30.7  97.7/50.9‡ 78.2 
10 92721 2020	Mar	30 Netherlands Beverwijk 32.6 31.4 31.8 30.8  93.7 47.7 
11 92722 2020	Mar	30 Netherlands Katwoude 32.9 32.6 32.7 31.4  84.6 53.9 
12 92723 2020	Mar	30 Netherlands Wervershoof 33.1 32.3 32.5 31.1  96.6 43.2 
13 92848 2020	Apr	1 Netherlands Amersfoort 33.6 32.1 32.3 31.6  96.6 39.4 
14 92849 2020	Apr	1 Netherlands Utrecht 32.4 31.4 31.8 30.6  57.8 48.5 
15 92851 2020	Apr	1 Netherlands Schiphol 33.7 33.1 33.4 32.3  89.4 53.5 
16 92852 2020	Apr	1 Netherlands Amsterdam	West 31.8 30.6 30.9 29.9  99.2/97.1‡ 59.1 
17 92853 2020	Apr	1 Netherlands Tilburg 33.5 32.6 32.6 32.0  91.2 ND 
18 92943 2020	Apr	2 Belgium Langemark 33.2 33.3 33.1 32.2  60.3 ND 
19 92947 2020	Apr	2 Belgium Lo-Reninge 34.6 34.2 34.5 33.4  71.3 ND 
20 92949 2020	Apr	2 Belgium Properinge 34.5 33.4 33.4 32.4  65.6 65.6 
21 92965 2020	Apr	2 Netherlands Delft 32.9 32.9 32.9 31.5  91.7 52.4 
22 93030 2020	Apr	5 Belgium Aartselaar 33.2 32.4 31.6 31.4  89.9 61.2 
23 93032 2020	Apr	5 Belgium Gent 34.2 33.7 32.6 32.1  63.2 46.9 
24 93034 2020	Apr	5 Belgium Leuven 33.6 33.4 32.1 31.4  70.2 37.6 
25 93036 2020	Apr	5 Belgium Tienen 33.3 32.6 31.2 30.8  88.1 41.5 
26 93818 2020	Apr	8 Netherlands Amersfoort 34.9 34.3 33.4 32.4  37.5 ND 
27 93820 2020	Apr	9 Netherlands Utrecht 32.8 32.2 31.2 30.8  55.2 ND 
28 93822 2020	Apr	9 Netherlands Amsterdam	West 32.6 25.1 31.6 30.9  87.3 ND 
29 93823 2020	Apr	9 Netherlands Schiphol 33.0 33.2 32.2 31.3  67.3 43.5 
30 93825 2020	Apr	8 Netherlands Delft 33.9 33.7 32.7 32.0  63.9 64.3 
31 93828 2020	Apr	9 Netherlands Tilburg 35.2 34.6 33.1 32.7  31.2 ND 
32 93948 2020	Apr	14 Netherlands Heeswijk-Dinther 35.8 34.6 33.6 32.7  18.8 ND 
33 93950 2020	Apr	15 Netherlands Wervershoof 34.9 34.3 33.1 32.5  60.7 ND 
34 94330 2020	Apr	21 Netherlands Utrecht1 35.1 34.4 33.2 33.5  41.7 ND 
35 94331 2020	Apr	21 Netherlands Utrecht2 35.7 34.1 34.2 33.7  38.6 ND 
36 94334 2020	Apr	21 Netherlands Amsterdam	West 34.0 33.3 32.4 32.0  66.7 ND 
37 94335 2020	Apr	21 Netherlands Schiphol 33.8 34.1 32.9 33.7  40.1 43.0 
38 94337 2020	Apr	21 Netherlands Delft 35.7 34.1 34.1 33.8  34.2 ND 
39 94339 2020	Apr	21 Netherlands Tilburg 34.8 35.4 34.7 36.0  11.2 80.3 
40 94602 2020	Apr	29 Netherlands Utrecht 35.6 34.3 33.0 34.2  29.6 ND 
41 94604 2020	Apr	29 Netherlands Amsterdam	West 34.9 34.6 32.8 33.6  15.0 ND 
42 94605 2020	Apr	29 Netherlands Schiphol 34.6 35.1 33.6 33.2  21.3 35.2 
43 94607 2020	Apr	25 Netherlands Delft 35.8 36.2 34.4 34.0  15.3 ND 
44 94976 2020	May	7 Netherlands Utrecht 35.5 36.0 35.1 33.5  6.3 ND 
45 94978 2020	May	7 Netherlands Amsterdam	West 35.0 34.8 34.5 33.7  19.8 ND 
46 94982 2020	May	6 Netherlands Delft 35.1 35.9 34.7 33.7  18.7 ND 
47 95550 2020	May	13 Netherlands Utrecht ND 34.4 ND 32.0  3.0 ND 
48 95552 2020	May	13 Netherlands Amsterdam	West ND 34.2 ND 32.8  20.4 ND 
49 95556 2020	May	12 Netherlands Delft ND 34.4 ND 34.1  0 ND 
50 95558 2020	May	13 Netherlands Tilburg ND 34.3 ND 36.1  0 ND 
51 95793 2020	May	19 Netherlands Utrecht ND 35.1 ND 34.9  0 ND 
52 95794 2020	May	19 Netherlands Amsterdam	West ND 35.1 ND 34.2  7.7 ND 
53 96925 2020	Jun	2 Netherlands Utrecht ND 35.2 ND 37.1  0 ND 
54 96927 2020	Jun	2 Netherlands Schiphol ND 32.5 ND 31.1  30.8 34.0 
55 97044 2020	Jun	3 Netherlands Delft ND 35.7 ND 33.5  8.2 ND 
*Ct,	cycle	threshold;	E,	envelope;	N,	nucleocapsid;	ND,	not	determined;	SARS-CoV-2,	severe	acute	respiratory	syndrome	coronavirus	2. 
†Three primer–probe	sets	targeting	the	N1–N3	genes	and	1	targeting	the	E	gene. 
‡These samples were sequenced twice. 
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clade within a sample; the presence of these muta-
tions can also aid in the detection of virus mixtures 
in a sample. During the period of wastewater-sample 
collection, Nextstrain defined 5 major clades (19A, 
19B, 20A, 20B, and 20C). Each clade is defined by 
the presence of >2 linked mutations. Clade 19A is 
the root clade and contains the Wuhan-Hu-1 refer-
ence sequence. Both 19B and 20A emerged from 19A, 
where 2 and 3 linked mutations define these major 
clades: T28144C and C8782T define 19B; and C3037T, 
C14408T, and A23403G define 20A. Clades 20B and 
20C emerged from 20A, where the trinucleotide sub-
stitution GGG28881–28883AAC defines 20B and the 
linked mutations C1059T and G25563T define 20C. 
Nucleotide substitution A23403G, a signature muta-
tion of clades 20A, 20B, and 20C that generates the 
D614G amino-acid substitution in the S glycoprotein, 
was detected in 83.6% (51/61) of the samples that 
were sequenced at this region (Appendix Table 1). 
The GGG28881–28883AAC substitution was detected 
in 41.9% (18/43) of the sequences. One of the 2 muta-
tions defining the low-prevalence clades 20C and 19B 
(C1059T and T28144C) was found in 2 and 3 consen-
sus sequences. However, these sequences could not 
be assigned to these clades because regions containing 
the additional clade-defining mutations were not se-
quenced with sufficient coverage. The hCoV-19/env/
Netherlands/Amersfoort-92503-N/2020 sequence 
contained a mix of clade-defining mutations: C1059T, 

which defines 20C; T28144C, which defines 19B; and 
GGG28881–28883AAC, which defines 20B. This find-
ing indicates that the obtained consensus sequence 
does not represent a single strain.

In addition to the clade-defining mutations, we 
detected 49 and 63 SNPs that were not present in ei-
ther the Netherlands (1,544 sequences) or Belgium 
(888 sequences) datasets but were seen in the global 
dataset (55,074 sequences), although with <1% preva-
lence (Appendix Table 2). Moreover, we detected 51 
novel mutations in sewage consensus sequences that 
were not previously reported, of which 48 were sup-
ported by coverage above the thresholds set for high 
quality (coverage >30× for Nanopore and coverage 
>5× and Phred score >30 for Illumina). Discrepan-
cies between consensus sequences of the same sew-
age sample can occur. AmsterdamWest-92852 was 
sequenced 3 times and 4 positions varied (Appendix 
Table 1). These differences are explained by the pres-
ence of variant sites in a single sample in similar per-
centages, which resulted in differences in consensus 
sequences between sequencing runs.

LFV Analysis
Given that sewage samples are likely to contain a 
mixture of SARS-CoV-2 strains, we performed a vari-
ant analysis with Illumina data to distinguish multi-
ple strains within single samples. By using a coverage 
>50×, Phred score >30, and a frequency threshold of 

Figure 1. Quantitative reverse 
transcription PCR Ct of severe 
acute respiratory syndrome 
coronavirus 2 RNA in sewage 
samples as determined by N 
gene (N1–N3) and E gene 
assays against the percentage 
of genome covered (>10×) by 
nanopore reads, the Netherlands 
and Belgium. A) N1 gene; B) N2 
gene; C) N3 gene; D) E gene. Ct, 
cycle threshold.
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>10% as settings, we found 21 positions with at least 
1 sample containing major and minor variants (Ta-
ble 2). Of these, 14 mutations resulted in changes at 
the amino acid level (12 nonsynonymous mutations 
and 2 deletions). Of note, 8 of these (4497C, 10514C, 
11484T, 13046A, 16538_16540delATA, 16777T, 
16823T, and 28736A) are novel mutations that did not 

appear in the Netherlands–Belgium or global datas-
ets. The other 7 variants appeared but demonstrated 
low prevalence in both datasets (0.002%–0.130%). The 
most prominent of these was the 28139A mutation in 
a wastewater sample from March, which was detect-
ed in only 4 sequences worldwide and demonstrated 
both a strong temporal (all detected in March 2020) 

Figure 2. Phylogenetic analysis of severe acute respiratory 
syndrome coronavirus 2 genome consensus sequences detected 
in sewage samples, the Netherlands and Belgium. A) The 
Netherlands subsample dataset; B) global subsample dataset. 
Lines with dots in green indicate samples sequenced in this study. 
Clades (19A, 19B, 20A, 20B, and 20C) were assigned by using 
the Nextclade tool (https://clades.nextstrain.org). For the global 
subsample tree, samples in orange indicate the Netherlands 
sequences. Samples in purple indicate Belgium sequences. Scale 
bars indicate inferred number of nucleotide substitutions per site.
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and regional signal (2 sequences from the Nether-
lands [EPI_ISL_422640 and EPI_ISL_422880], 1 from 
Denmark [EPI_ISL_444879], and 1 from Belgium 
[EPI_ISL_458209]).

Finally, 4 variants (1440A, 11083T, 11109T, and 
24862G) appeared at higher levels in both datasets 
(>0.5%); 11109T and 24862G were 28.5 and 14.3 times 
more prevalent in the Netherlands dataset than in the 
global dataset (Table 2). The other variants appeared 
at similar frequencies in all datasets.

In addition to consensus sequences, LFV analysis 
is of value for identifying potential local outbreaks. 
This identification could be achieved by detecting 
cluster-defining mutations that are associated with 
sequences from a particular geographic area. To as-
sociate the presence of a minor variant to sequences 
belonging to unique clusters, we mapped the 4 most 
prevalent LFVs onto the Netherlands–Belgium sub-
sample and global subsample phylogenetic trees (Fig-
ure 3). For 3 variants (1440A, 11109T, and 24862G), 

the presence of the mutation and their clustering on 
the phylogenies were clearly associated. However, 
when 1 of these 3 variants was detected as an LFV in 
a sewage sample, the consensus sequence of this sam-
ple did not group with the cluster of clinical samples 
that contains the variant. For example, the 24862G 
variant in sample Tilburg-94339 was detected in 2 
unique clusters within clade 20A, whereas its consen-
sus sequence (hCoV-19/env/Netherlands/Tilburg-
94339-I/2020) clustered within clade 20B, suggesting 
the presence of both clades in this sample. Although 
mutation 11083T was most prevalent in clade 19A, it 
was also scattered along the trees, indicating poor as-
sociation with a particular clade.

Discussion
The use of wastewater sampling as a tool to learn more 
about the epidemiology and diversity of SARS-CoV-2 
at a community level offers many advantages over hu-
man sampling. Sewage samples are relatively easy to 

 
Table 2. Summary	of	LFVs	detected	in	wastewater	samples	determined	by	Illumina	sequencing	in	study	of	SARS-CoV-2	circulation	
and	diversity	through	community	wastewater	sequencing,	the	Netherlands	and	Belgium* 

Position† Sample MV LFV LFV,	% 
Total	
depth Feature AA MV 

AA 
LFV 

Frequency, %‡ 
NL BE Global 

1440 NL/Schiphol-92506-I G A 13.2 53 ORF1a G N 1.619 4.167 1.903 
3549 NL/Franeker-92719-I GACCA 

CTTA 
–§ 46.8 201 ORF1a GPLK E 0 0 0 

4497 NL/Beverwijk-92721-I T C 42.6 479 ORF1a I T 0 0 0.000 
10514 NL/AmsterdamWest-

92852-I 
T C 12.5 1,656 ORF1a Y H 0 0 0 

10933 BE/Aartselaar-93030-I C T 18.0 50 ORF1a P P 100.000 100.000 99.996 
NL/Tilburg-94339-I T C 11.1 63 ORF1a P P 0 0 0.004 

11083 BE/Properinge-92949-I G T 12.1 58 ORF1a L F 5.635 7.320 11.007 
BE/Aartselaar-93030-I T G 26.4 129 ORF1a F L 94.430 92.680 88.069 
NL/Tilburg-94339-I G T 12.7 150 ORF1a L F 5.635 7.320 11.007 

11109 NL/AmsterdamWest-
92852-I 

C T 48.3 230 ORF1a A V 15.220 0.338 0.534 

NL/Tilburg-94339-I C T 21.2 66 ORF1a A V 15.220 0.338 0.534 
11484 NL/Beverwijk-92721-I C T 44.0 84 ORF1a A V 0 0 0 
11494 NL/Franeker-92719-I C T 13.5 104 ORF1a N N 0 0 0.002 

BEAartselaar-93030-I C T 43.5 370 ORF1a N N 0 0 0.002 
NL/Tilburg-94339-I C T 13.8 247 ORF1a N N 0 0 0.002 

13046 BE/Aartselaar-93030-I C A 36.7 98 ORF1a P T 0 0 0 
13426 BE/Gent-93032-I C T 22.6 115 ORF1a R R 0 0 0.038 
16538 BE/Gent-93032-I – ATA 27.6 348 ORF1b – N 100.000 100.000 100.000 
16777 NL/Schiphol-92851-I G T 30.2 404 ORF1b V F 0 0 0 
16806 NL/Tilburg-94339-I C A 22.1 77 ORF1b N K 0 0 0.016 
16823 BE/Aartselaar-93030-I G T 12.0 192 ORF1b G V 0 0 0 
24862 NL/Katwoude-92722-I A G 34.0 53 S T T 8.614 0.338 0.463 
28115 NL/Delft-92965-I T C 47.8 67 ORF8 I I 100.000 100.000 99.993 
28139 NL/Tilburg-94339-I C A 36.0 136 ORF8 S S 0.130 0.113 0.007 
28375 NL/Tilburg-94339-I G A 30.8 146 N G G 0 0 0.002 
28394 NL/AmsterdamWest-

92852-I 
C T 31.5 54 N R W 0 0 0.004 

BE/Properinge-92949-I C T 16.7 60 N R W 0 0 0.004 
NL/Tilburg-94339-I C T 13.6 191 N R W 0 0 0.004 

28736 BE/Leuven-93034-I A G 22.0 363 N A T 100.000 100.000 100.000 
*BE,	Belgium;	LFV,	low-frequency	variant;	MV,	major	variant;	NL,	Netherlands;	SARS-CoV-2,	severe	acute	respiratory	syndrome	coronavirus	2. 
†Positions are given with respect to Wuhan-Hu-1	(GenBank	accession	no.	MN908947). 
‡Frequency of the LFV of sample against GISAID database (as of July 8, 2020) of the Netherlands, Belgium, and global samples. 
§Dashes represent a gap at the given	region,	either	as	a	MV	or	LFV. 
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collect, sampling bias toward severe cases does not 
occur, ethical issues are limited, and potentially fewer 
samples are required to determine temporal changes 
of viral infections in the community (35,36). Neverthe-
less, comprehensive comparisons with clinical surveil-
lance are required to determine the extent and limits of 
using sewage as a surveillance or early-warning tool.

We used nanopore and Illumina NGS analysis to 
study the diversity of SARS-CoV-2 in sewage and com-
pared these results to the viral diversity found in clinical 
samples. To evaluate this diversity in a comprehensive 
fashion, we used the Nextstrain clade classification sys-
tem because it is based on the use of signature muta-
tions to assign sequences to a clade (3), enabling the as-
sociation of SNPs or LFV to a particular clade, especially 
for genome sequences with <75% coverage.

Our method enabled us to obtain complete or near-
complete genomes from wastewater samples with Ct 
values of >5 Cts below the limit of detection and par-
tial genomes for samples with higher Ct values. To in-
crease the percentage of genome covered, a threshold 
of 10× coverage per position was used to generate con-
sensus sequences from nanopore reads. The error rate 
with this threshold is <0.03%, and most of the muta-
tions (132/145) listed have a coverage of >30×, which 
produces an error rate of 1/585,000 nt (30).

Of note, we found sewage samples that clustered 
with sequences isolated from patients of the same re-
gion and LFV with a strong regional signal. In a recent 

study from the United States, wastewater contained 
SARS-CoV-2 genomes identical to those in clinical 
samples from the same region (37). Sewage samples 
can contain a mixture of SARS-CoV-2 viruses, which 
can be an indication of multiple viruses circulating 
within a community and perhaps in domestic and live-
stock animals (38–42). We applied a targeted amplifi-
cation method and thus did not assess the presence of 
other viruses. Consensus sequence genomes from a 
wastewater sample can identify the predominant virus 
strain in a population, which is suitable for locations 
with few introductions of the virus (22,23). However, 
this approach is not appropriate for a population in 
which multiple virus strains are circulating in paral-
lel. Moreover, it might lead to artificial consensus ge-
nomes that do not represent an existing virus.

NGS analysis can unravel the diversity of viruses 
within a complex sample such as wastewater, particu-
larly by using unbiased sequencing of the sewage vi-
rome (43). Nevertheless, the detection of variants of a 
virus in a single sample can be challenging because of 
the relatively low number of reads obtained for each 
virus. Targeted amplification and NGS of a small ge-
nome region of the virus of interest to determine the 
prevalence of virus variants within a single wastewa-
ter sample is more sensitive and less expensive; use 
of this approach has been reported for enteroviruses, 
human mastadenoviruses, and noroviruses (12,18,44). 
Because the diversity of SARS-CoV-2 is still limited, 

Figure 3. Phylogenetic trees showing 4 low-frequency variants detected in sewage samples in study of severe acute respiratory 
syndrome coronavirus 2 circulation and diversity through community wastewater sequencing, the Netherlands and Belgium. A) The 
Netherlands–Belgium subsample; B) global subsample. Patient sequences containing the mutation are shown in magenta. Lines in 
green indicate sewage samples sequenced in this study. Clades (19A, 19B, 20A, 20B, and 20C) are indicated in colors at the left of 
the figure. Blue arrows show the consensus sequences (if available) of the sewage samples in which the low-frequency variant was 
detected. Scale bars indicate the inferred number of nucleotide substitutions per site.
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however, this approach would not be useful since no 
single small piece of the genome can reliably differenti-
ate between clades or lineages. However, we demon-
strated that some LFVs and SNPs can be linked to par-
ticular clusters or clades within trees without the need 
for a complete genome. To confidently determine the 
presence of a particular cluster within a sample, at least 
2 LFVs associated with the cluster should be present 
at substantial levels. Furthermore, variant analysis can 
also be used to monitor the prevalence of biologically 
relevant mutations, such as D614G, which has been 
shown to increase infectivity in vitro (45) and might 
be associated with higher transmission and death rates 
(46; M. Cortey, unpub. data, https://www.biorxiv.
org/content/10.1101/2020.05.16.099499v1). Within 
our dataset, clear temporal changes in the prevalence 
of LFVs or SNPs in sewage samples that correlated 
with changes in the clinical dataset were not detected 
during the first wave.

The combination of whole-genome sequencing of 
clinical samples with epidemiologic data is vital for 
public health decision-making (26) because it helps 
identify clusters of infection, new introductions of 
virus, and the expansion and decline of circulating 
strains. Cities with large numbers of visitors are ex-
pected to experience several introductions of the vi-
rus, whereas the opposite is expected for cities with 
low numbers of visitors. The use of NGS analysis of 
sewage samples to evaluate viral diversity within a 
geographic area and its changes over time can aid in 
decision-making. For example, in scenarios in which 
a large increase of viral diversity is detected in sew-
age, suggesting new introductions of virus, appropri-
ate measures can be taken.

Wastewater can also be used to monitor novel 
mutations. Our consensus and LFV analyses revealed 
57 mutations that were not seen in the global data-
base. These novel mutations might not have been 
detected for several reasons: they represent technical 
errors; the mutations did not stay within the popu-
lation; or the mutations are associated with asymp-
tomatic or mild disease, viruses from animal hosts, 
enteric shedding, or defective genomes. The presence 
of defective genomes has previously been suggested 
for the detection of LFVs that generate stop codons in 
clinical samples (47). Phenotypic studies could help 
determine the likelihood and biologic relevance of 
these novel mutations.

In conclusion, this study illustrates the value of 
NGS analysis of wastewater to approximate the di-
versity of SARS-CoV-2 circulating in a community. 
Sequencing of wastewater samples could be a power-
ful tool to complement clinical surveillance or could 

be used independently in settings in which wide clin-
ical sequencing is unfeasible. In addition, in-depth 
NGS analysis of wastewater samples can help in 
assessing changes in viral diversity, which can indi-
cate the emergence of epidemiologically or clinical-
ly relevant mutations and thereby aid public health  
decision-making.

This article was preprinted at https://www.medrxiv.org/
content/10.1101/2020.09.21.20198838v1.
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Methicillin-resistant Staphylococcus aureus, bet-
ter known as MRSA, is often found on human skin. 
But MRSA can also cause dangerous infections that 
are resistant to common antimicrobial drugs. Epide-
miologists carefully monitor any new mutations or 
transmission modes that might lead to the spread of 
this infection.

Approximately 15 years ago, MRSA emerged in 
livestock. From 2008 to 2018, the proportion of in-
fected pigs in Denmark rocketed from 3.5% to 90%. 

What happened, and what does this mean for hu-
man health?

In this EID podcast, Dr. Jesper Larsen, a senior re-
searcher at the Statens Serum Institut, describes the 
spread of MRSA from livestock to humans. 


