4 research outputs found

    Inclusion of Mannan-Oligosaccharides in Diets for Tropical Gar Atractosteus tropicus Larvae: Effects on Growth, Digestive Enzymes, and Expression of Intestinal Barrier Genes

    No full text
    Mannan-oligosaccharides (MOS) are non-digestible carbohydrates, and their use in aquaculture as prebiotics is well documented. The objective of this work was to test whether MOS supplemented in the diet of A. tropicus larvae (2, 4, and 6 g kg−1) influence growth parameters, the activity of digestive enzymes, and the expression of genes related to the intestinal barrier. The highest total length was observed in larvae fed 6 g kg−1 MOS compared to control larvae. Trypsin activity increased with the addition of MOS to the diets, but leucine aminopeptidase activity only increased with 6 g kg−1 MOS. Lipase and α-amylase activities increased in larvae fed with 2 and 4 g kg−1 MOS. The expression of zo-2 was higher with the 6 g kg−1 MOS treatment. The cl-3 transcripts were lower with 2 g kg−1 MOS but higher with 6 g kg−1 MOS. All tested concentrations of MOS increased the expression of muc-2. In this study, incorporating mannan-oligosaccharides into the diet of A. tropicus larvae had a positive effect, and the concentration of 6 g kg−1 produced the best results. Therefore, including this prebiotic in the diets for the culture of A. tropicus larvae is suitable

    Metabolic responses of adult lion's paw scallops Nodipecten subnodosus exposed to acute hyperthermia in relation to seasonal reproductive effort

    No full text
    WOS:000562870700002International audienceIn marine ectotherms, reproduction is an energetically expensive process that affects their thermal window tolerance. For most species, the impacts of hyperthermia during gametogenesis have still not been addressed. Our aim was to assess the metabolic response of adult Nodipecten subnodosus scallops to thermal challenges at early development (spring) and advanced gonad maturation (summer). Scallops collected in both seasons were exposed to acute hyperthermia (26 and 30 degrees C, 24 h), maintaining a group of scallops at acclimation temperature (22 degrees C) as a control condition. During the summer, relatively low activity of hexokinase (HK), as well as low levels of ATP and GTP were found in the adductor muscle, suggesting a shift in energy investment for reproduction, although arginine phosphate (ArgP) levels were higher in summer scallops. Hyperthermia (30 degrees C) induced an increased energy expenditure reflected by a transitory enhanced oxygen consumption (VO2) and relatively high activities of HK and arginine kinase (AK). Moreover, a slight decrease in adenylic energy charge (AEC) was partially compensated by a decrease in ArgP. An increase in nucleotide by-products inosine monophosphate (IMP) and hypoxanthine (HX) indicated a thermal stress at 30 degrees C. Some of the responses to acute hyperthermia were more pronounced at advanced maturation stages (summer scallops), indicating a possible lack of energy balance, with possible implications in animals challenged to global warming scenario

    Inclusion of Mannan-Oligosaccharides in Diets for Tropical Gar <i>Atractosteus tropicus</i> Larvae: Effects on Growth, Digestive Enzymes, and Expression of Intestinal Barrier Genes

    No full text
    Mannan-oligosaccharides (MOS) are non-digestible carbohydrates, and their use in aquaculture as prebiotics is well documented. The objective of this work was to test whether MOS supplemented in the diet of A. tropicus larvae (2, 4, and 6 g kg−1) influence growth parameters, the activity of digestive enzymes, and the expression of genes related to the intestinal barrier. The highest total length was observed in larvae fed 6 g kg−1 MOS compared to control larvae. Trypsin activity increased with the addition of MOS to the diets, but leucine aminopeptidase activity only increased with 6 g kg−1 MOS. Lipase and α-amylase activities increased in larvae fed with 2 and 4 g kg−1 MOS. The expression of zo-2 was higher with the 6 g kg−1 MOS treatment. The cl-3 transcripts were lower with 2 g kg−1 MOS but higher with 6 g kg−1 MOS. All tested concentrations of MOS increased the expression of muc-2. In this study, incorporating mannan-oligosaccharides into the diet of A. tropicus larvae had a positive effect, and the concentration of 6 g kg−1 produced the best results. Therefore, including this prebiotic in the diets for the culture of A. tropicus larvae is suitable

    Incorporation of Fructooligosaccharides in Diets Influence Growth Performance, Digestive Enzyme Activity, and Expression of Intestinal Barrier Function Genes in Tropical Gar (<i>Atractosteus tropicus</i>) Larvae

    No full text
    This study was conducted to investigate the effects of dietary fructooligosaccharides (FOS) on the growth, survival rate, digestive enzyms activity, and the expression of intestinal barrier function genes in tropical gar (Atractosteus tropicus) larvae. A total of 960 larvae (0.030 ± 0.006 g) were fed three diets supplemented with increasing FOS concentrations (2.5, 5, and 7.5 g kg−1) and a control diet for 15 days. Results revealed that a 7.5 g kg−1 FOS supplementation improved weight gain, specific growth rate, and survival rate (p −1 FOS supplementation increased alkaline protease and amylase activities and induced an upregulation of the claudin-17 gene expression (p −1 FOS induced the upregulation of mucin 2 (muc-2), and the tight junction genes zo-2 and claudin-3 (p −1 FOS promoted the downregulation of the claudin-15 gene expression (p il-8 expression. We can conclude that 7.5 g kg−1 FOS supplementation improves growth performance, survival rate, and digestive capacity, and could contribute to the reinforcement of the intestinal barrier function of Tropical gar larvae
    corecore