36 research outputs found

    Differences in growth-economics of fast vs. slow growing grass species in response to temperature and nitrogen limitation individually, and in combination

    Get PDF
    Background Fast growing invasive alien species are highly efficient with little investment in their tissues. They often outcompete slower growing species with severe consequences for diversity and community composition. The plant economics trait-based approach provides a theoretical framework, allowing the classification of plants with different performance characteristics. However, in multifaceted background, this approach needs testing. The evaluation and prediction of plant performance outcomes in ecologically relevant settings is among the most pressing topics to understand and predict ecosystem functioning, especially in a quickly changing environment. Temperature and nutrient availability are major components of the global environmental change and this study examines the response of growth economic traits, photosynthesis and respiration to such changes for an invasive fast-growing (Bromus hordaceus) and a slow-growing perennial (Bromus erectus) grass species. Results The fully controlled growth chamber experiment simulated temperature-and changes in nitrogen availability individually and in combination. We therefore provide maximum control and monitoring of growth responses allowing general growth trait response patterns to be tested. Under optimal nitrogen availability the slow growing B. erectus was better able to handle the lower temperatures (7 degrees C) whilst both species had problems at higher temperatures (30 degrees C). Stresses produced by a combination of heat and nutrient availability were identified to be less limiting for the slow growing species but the combination of chilling with low nutrient availability was most detrimental to both species. Conclusions For the fast-growing invader B. hordeaceus a reduction of nitrogen availability in combination with a temperature increase, leads to limited growth performance in comparison to the slow-growing perennial species B.erectus and this may explain why nutrient-rich habitats often experience more invasion than resource-poor habitats

    Ecophysiological characterization of early successional biological soil crusts in heavily human-impacted areas

    Get PDF
    Ecophysiological characterizations of photoautotrophic communities are not only necessary to identify the response of carbon fixation related to different climatic factors, but also to evaluate risks connected to changing environments. In biological soil crusts (BSCs), the description of ecophysiological features is difficult, due to the high variability in taxonomic composition and variable methodologies applied. Especially for BSCs in early successional stages, the available datasets are rare or focused on individual constituents, although these crusts may represent the only photoautotrophic component in many heavily disturbed ruderal areas, such as parking lots or building areas with increasing surface area worldwide. We analyzed the response of photosynthesis and respiration to changing BSC water contents (WCs), temperature and light in two early successional BSCs. We investigated whether the response of these parameters was different between intact BSC and the isolated dominating components. BSCs dominated by the cyanobacterium <i>Nostoc commune</i> and dominated by the green alga <i>Zygogonium ericetorum</i> were examined. A major divergence between the two BSCs was their absolute carbon fixation rate on a chlorophyll basis, which was significantly higher for the cyanobacterial crust. Nevertheless, independent of species composition, both crust types and their isolated organisms had convergent features such as high light acclimatization and a minor and very late-occurring depression in carbon uptake at water suprasaturation. This particular setup of ecophysiological features may enable these communities to cope with a high variety of climatic stresses and may therefore be a reason for their success in heavily disturbed areas with ongoing human impact. However, the shape of the response was different for intact BSC compared to separated organisms, especially in absolute net photosynthesis (NP) rates. This emphasizes the importance of measuring intact BSCs under natural conditions for collecting reliable data for meaningful analysis of BSC ecosystem services

    High Resilience and Fast Acclimation Processes Allow the Antarctic Moss Bryum argenteum to Increase Its Carbon Gain in Warmer Growing Conditions

    Get PDF
    SIMPLE SUMMARY: Temperatures are increasing globally, but polar regions (including Antarctica) are warming much faster than the rest of the globe. Increased temperatures in Antarctica can impact the distribution and performance of plants, the majority of which on this continent are mosses. This study aims to investigate whether Bryum argenteum var. muticum, a moss species found in Antarctica, is capable of acclimation (adjustment of its physiology, specifically photosynthesis and respiration) to increased temperatures. We used short-term warming experiments that mimicked heatwaves and compared them to seasonal rates of photosynthesis and respiration in order to better understand how resilient this important moss species is to climate change. We found that this moss can acclimate very quickly (within 7 days) by increasing its photosynthesis (carbon gain). This shows that B. argenteum is highly resilient, and it may potentially benefit from short- and long-term climatic changes. ABSTRACT: Climate warming in Antarctica involves major shifts in plant distribution and productivity. This study aims to unravel the plasticity and acclimation potential of Bryum argenteum var. muticum, a cosmopolitan moss species found in Antarctica. By comparing short-term, closed-top chamber warming experiments which mimic heatwaves, with in situ seasonal physiological rates from Cape Hallett, Northern Victoria Land, we provide insights into the general inherent resilience of this important Antarctic moss and into its adaptability to longer-term threats and stressors associated with climate change. Our findings show that B. argenteum can thermally acclimate to mitigate the effects of increased temperature under both seasonal changes and short-term pulse warming events. Following pulse warming, this species dramatically increased its carbon uptake, measured as net photosynthesis, while reductions in carbon losses, measured as dark respiration, were not observed. Rapid growth of new shoots may have confounded the effects on respiration. These results demonstrate the high physiological plasticity of this species, with acclimation occurring within only 7 days. We show that this Antarctic moss species appears to have a high level of resilience and that fast acclimation processes allow it to potentially benefit from both short-term and long-term climatic changes

    Himantormia lugubris, an Antarctic endemic on the edge of the lichen symbiosis

    Get PDF
    Himantormia lugubris is an Antarctic endemic with a distribution restricted to the northwest tip of Antarctic Peninsula, adjacent islands and South Georgia Island. In this region H. lugubris is an important component of the epilithic lichen community. The species has a fruticose thallus with usually simple and flattened branches whose grey surface is often disrupted exposing the black and dominant chondroid axis. Because the photobiont cells are mainly restricted to the patchy grey areas, positive carbon balance seems to be rather difficult for this species. Therefore, the aim of this paper is to elucidate which functional strategy, possibly linked with thallus anatomy, is used by H. lugubris that enables it to be a successful species in the maritime Antarctic. To achieve this goal, we constructed a picture of the lichen’s physiological, anatomical and morphological characteristics by using a broad range of technologies, such as chlorophyll fluorescence, CO exchange and electron microscopy. We found that H. lugubris has a very low net photosynthesis, apparently restricted to the grey areas, but high respiratory rates. Therefore, positive net photosynthesis is only possible at low temperatures. Chlorophyll content is also low but is present in both gray and black areas. Our conclusion is that the only possibility for this species to achieve a positive carbon balance is to be active for long periods under optimal conditions, that means, wet, cold and with enough light, a common combination in this region of Antarctica. Given these constrains, we suggest that H. lugubris is likely to be especially sensitive species to predicted climate warming in the maritime Antarctic.Field work as well as most of the lab experiments were supported by the grant CTM2015-64728-C2-1-R (MINECO/FEDER, UE). Electron microscopy work wassupported by the grant CTM2015-64728-C2-2-R (MINECO/FEDER, UE)

    Exploring environmental and physiological drivers of the annual carbon budget of biocrusts from various climatic zones with a mechanistic data-driven model

    Get PDF
    Biocrusts are a worldwide phenomenon, contributing substantially to ecosystem functioning. Their growth and survival depend on multiple environmental factors, including climatic ones, and the relations of these factors to physiological processes. Responses of biocrusts to individual environmental factors have been examined in a large number of field and laboratory experiments. These observational data, however, have rarely been assembled into a comprehensive, consistent framework that allows quantitative exploration of the roles of multiple environmental factors and physiological properties for the performance of biocrusts, in particular across climatic regions. Here we used a data-driven mechanistic modelling framework to simulate the carbon balance of biocrusts, a key measure of their growth and survival. We thereby assessed the relative importance of physiological and environmental factors for the carbon balance at six study sites that differ in climatic conditions. Moreover, we examined the role of seasonal acclimation of physiological properties using our framework, since the effects of this process on the carbon balance of biocrusts are poorly constrained so far. We found substantial effects of air temperature, CO2 concentration, and physiological parameters that are related to respiration on biocrust carbon balance, which differ, however, in their patterns across regions. The ambient CO2 concentration is the most important factor for biocrusts from drylands, while air temperature has the strongest impact at alpine and temperate sites. Metabolic respiration cost plays a more important role than optimum temperature for gross photosynthesis at the alpine site; this is not the case, however, in drylands and temperate regions. Moreover, we estimated a small annual carbon gain of 1.5 g m−2 yr−1 by lichen-dominated biocrust and 1.9 g m−2 yr−1 by moss-dominated biocrust at a dryland site, while the biocrusts lost a large amount of carbon at some of the temperate sites (e.g. −92.1 for lichen-dominated and −74.7 g m−2 yr−1 for moss-dominated biocrust). These strongly negative values contradict the observed survival of the organisms at the sites and may be caused by the uncertainty in environmental conditions and physiological parameters, which we assessed in a sensitivity analysis. Another potential explanation for this result may be the lack of acclimation in the modelling approach, since the carbon balance can increase substantially when testing for seasonally varying parameters in the sensitivity analysis. We conclude that the uncertainties in air temperature, CO2 concentration, respiration-related physiological parameters, and the absence of seasonal acclimation in the model for humid temperate and alpine regions may be a relevant source of error and should be taken into account in future approaches that aim at estimating the long-term biocrust carbon balance based on ecophysiological data.</p

    Ecophysiological properties of three biological soil crust types and their photoautotrophs from the Succulent Karoo, South Africa

    Get PDF
    Background and Aims Biological soil crusts cover about one third of the terrestrial soil surfaces in drylands, fulfilling highly important ecosystem services. Their relevance to global carbon cycling, however, is still under debate. Methods We utilized CO2 gas exchange measurements to investigate the net photosynthetic response of combined cyanobacteria/cyanolichen-, chlorolichen- and moss-dominated biocrusts and their isolated photoautotrophic components to light, temperature, and water. The results were compared with field studies to evaluate their compatibility. Results Different biocrust types responded similarly, being inhibited by limited and excess water, saturated by increasing light intensities, and having optimum temperatures. Cyanobacteria/cyanolichen-dominated biocrusts reached their water optimum at lowest contents (0.52–0.78 mm H2O), were saturated at highest light intensities, and had a comparably high temperature optimum at 37 °C. Chlorolichen-dominated crusts had a medium water optimum (0.75–1.15 mm H2O), medium saturating light intensities and a moderate temperature optimum of 22 °C. Moss-dominated biocrusts had the highest water optimum (1.76–2.38 mm H2O), lowest saturating light intensities, and a similar temperature optimum at 22 °C. Isolated photoautotrophs responded similar to complete crusts, only isolated moss stems revealed much lower respiration rates compared to complete crusts. Conclusions In addition to their overall functional similarities, cyanobacteria/cyanolichen-dominated biocrusts appeared to be best adapted to predicted climate change of increasing temperatures and smaller precipitation events, followed by chlorolichen-dominated biocrusts. Moss-dominated biocrusts needed by far the largest amounts of water, thus likely being prone to anticipated climate change
    corecore