55 research outputs found

    Glucose-6-phosphate-dehydrogenase deficiency as a risk factor in proliferative disorder development

    Get PDF
    Glucose-6-phosphate dehydrogenase (G6PD) is an important site of metabolic control in the pentose phosphate pathway (PPP) which provides reducing power (NADPH) and pentose phosphates. The former is mainly involved in the detoxification of chemical reactive species; the latter in the regulation of cell proliferation. G6PD deficiency is the most common enzymopathy in the human population, characterized by decreased G6PD activity, mainly in red blood cells, but actually also in nucleated cells. This decreased activity is not due to enzyme synthesis impairment, but rather to reduced enzyme stability, which leads to a shortening of its half-life. Therefore, a major problem is to understand the underlying mechanisms linking G6PD deficiency to oxidative stress and cell proliferation. In order to address this issue, in the present study we utilized, as an experimental model, fibroblasts isolated from pterygium, an ocular proliferative lesion, from G6PD normal and deficient (PFs+ and PFs-, respectively) patients. Our choice was determined by the fact that pterygium is believed to be caused by chronic oxidative stress induced by UV exposure, and that pterygium fibroblasts resemble a tumorigenic phenotype. As controls we utilized fibroblasts isolated from conjunctiva from G6PD normal and deficient patients (NCFs+ and NCFs-, respectively) who had undergone cataract surgery. 
Growth rate analysis revealed that PFs grow faster than NCFs, but while NCFs- grow more slowly than NCFs+, PFs- and PFs+ grow at the same rate. This was associated with significantly lower G6PD activity in NCFs+ compared to NCFs-, while no significant differences in the G6PD activity of PFs+ and PFs- were noted. This result was supported by the finding that in PFs-, G6PD mRNA levels were significantly higher than in PFs+. Another interesting finding of this study was increased green autofluorescence in both NCFs- and PFs- compared to corresponding positive cells, indicative of pronounced oxidative stress in deficient cells. Finally, abnormal accumulation of neutral lipids, mainly cholesterol esters was observed both in PFs- and PFs+ compared to NCFs- and NCFs+. Though further studies are necessary for better understanding the exact mechanism which links G6PD to oxidative stress and cell proliferation, our data allow to speculate on the role of G6PD on tumorigenesis, and to consider G6PD-deficient subjects at major risk to develop common and dreaded proliferative disorders, such as atherosclerosis and cancer. 
&#xa

    Modulation of cholesterol homeostasis by antiproliferative drugs in human pterygium fibroblasts.

    Get PDF
    PURPOSE. The authors have previously shown that the growth of cultured fibroblasts obtained from primary pterygia was associated with an increase in cholesterol esterification, suggesting that alterations of cholesterol homeostasis may be involved in the development and progression of this disorder. This investigation was conducted to determine whether antiproliferative agents such as pioglitazone (PIO) and everolimus (EVE) may inhibit proteins involved in the cholesterol ester cycle and the proliferation of pterygium fibroblasts (PF). METHODS. Quiescent normal conjunctival fibroblasts and PFs were treated with or without inhibitors of cell proliferation (PIO and EVE) or with inhibitors of cholesterol esterification— progesterone (Pg) and Sandoz compound (SaH)—and then were stimulated to growth by 10% fetal calf serum (FCS). Cell proliferation was assessed by counting cells. Trypan blue uptake was used to determine cell viability. mRNA and protein levels were determined by reverse transcription‐polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. RESULTS. PIO and EVE significantly abolished the increase in cholesterol esters, acyl-coenzyme A cholesterol acyltransferase (ACAT1), and multidrug resistance protein (MDR1) mRNA observed in growing cells. Each inhibitor upregulated ATP-binding cassette-A1 (ABCA1), neutral cholesterol ester hydrolase (NCEH) mRNA, and caveolin-1 expression in a manner similar to that of specific inhibitors of cholesterol esterification such as Pg and SaH. CONCLUSIONS. Intracellular modifications of cholesterol homeostasis may be relevant to pterygium development. Moreover, antiproliferative agents such as PIO and EVE may represent a potential topical medication in the prevention and inhibition of pterygium growth at an early stage, probably by modulation of cholesterol ester metabolism. (Invest Ophthalmol Vis Sci. 2007;48:3450‐3458) DOI:10.1167/iovs.06-105

    Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells

    Get PDF
    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells

    Changes in cholesterol metabolism-related gene expression in peripheral blood mononuclear cells from Alzheimer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cholesterol homeostasis dysfunction has been reported to have role in the pathogenesis of Alzheimer disease (AD). Therefore, changes in cholesterol metabolism in blood components may help to develop new potential AD biomarkers. In this study changes in cholesterol metabolism-related gene expression genes were evaluated in peripheral blood mononuclear cells (PBMCs) from AD subjects, their first degree relatives (FDR) and two groups of age matched controls (C1 > 80 years, C2 < 60 years). The expression of three genes related to APP processing was also determined.</p> <p>Results</p> <p>Results showed significantly different behavior (P = 0.000) in the expression of all analyzed genes among the 4 groups. An inverse correlation emerged between the age of controls and the propensity of their PBMCs to express selected genes. Moreover, when gene expression was evaluated in PBMCs from AD patients and compared with that of PBMCs from healthy subjects of the same age, LDL-R and APP mRNAs were most abundant in AD as compared C1 whereas SREBP-2 and particularly nCEH were present at much lower mRNA levels in AD-PBMCs. This study describes for the first time a differential expression profile of cholesterol and APP related genes in PBMCs from AD patients and their FDR.</p> <p>Conclusions</p> <p>We suggest that the expressions of cholesterol homeostasis and APP processing related genes in PBMC could be proposed as possible biomarkers to evaluate AD risk. In addition, gene expression in PBMC could be also used for diagnosis and development of therapeutic strategies as well as for personalized prediction in clinical outcome of AD.</p

    acat1 cav 1 and prp expression in brains and skin fibroblasts from sarda breed sheep with scrapie resistant and scrapie susceptible genotype

    Get PDF
    Scrapie is an infective ovine neurodegenerative disease; the only identified component of the infectious agent being an aberrant isoform (PrPSc) of the cellular prion protein (PrPC). So far, no means for ante-mortem diagnosis are available for Scrapie as well as for any other mammal Transmissible Spongiform Encephalopaties. We recently found a strong relationship between cell susceptibility to scrapie-infection and intracellular cholesterol homeostasis alterations. In brain tissues as well as in ex vivo cultures of skin fibroblasts and PBMCs from healthy and scrapie-affected sheep carrying a scrapie-susceptible (ARQ/ARQ) genotype, the levels of cholesterol esters were consistently higher than in tissues and cultures derived from animals with a scrapie-resistant (ARR/ARR) genotype. Moreover, both uninfected and scrapie-affected ARQ/ARQ sheep showed abnormally low levels of high density lipoprotein-cholesterol (HDL-C) in their plasma, as compared to ARR/ARR animals. We now show that intracellular accumulation of cholesterol esters in fibroblasts derived from scrapie-susceptible sheep was accompanied by parallel alterations in the expression level of genes and gene products (ACAT1 and Cav-1) that are involved in the pathways leading to intracellular cholesterol esterification and trafficking. Comparative analysis of PrPc mRNA, showed an higher expression level in cells from animals carrying susceptible genotype, with or without Scrapie. Preliminary experiments also revealed the presence of PK-resistant PrP isoforms in the latter cultures. The data reported in the present paper suggest that accumulation of cholesterol esters in peripheral cells, together with the altered expression of some proteins implicated in intracellular cholesterol homeostasis, might serve to identify a distinctive lipid metabolic profile associated with increased susceptibility to develop prion disease following infection

    Altered cholesterol ester cycle in ex vivo skin fibroblasts from Alzheimer patients

    Get PDF
    Recent studies in both animal and cell models of Alzheimer's disease (AD) indicated that sub-cellular cholesterol distribution seems to regulate amyloid-beta (A[beta]) generation in the brain. In particular, cholesterol-esters (CE), rather than total cholesterol levels, appear directly correlated with A[beta] production. Here we observed that, similarly to brain cells, skin fibroblasts obtained from AD patients produce and accumulate more CE than skin fibroblasts from age-matched healthy controls do. AD fibroblasts also exhibited a 2 fold increase in the expression of ACAT1, in addition to lower levels of SREBP2, nCEH, Caveolin-1 and ABCA1 mRNA levels, all of which are involved in the CE cycle. HMGCoA-reductase and LDL-receptor mRNAs levels did not show statistically significant changes in AD, compared to non-AD, cells. Furthermore, although APP mRNA did not significantly vary, neprilysin (NEP), the most important enzyme in the proteolysis of A[beta], was expressed at very low levels in skin fibroblasts of sporadic AD patients. Our results contribute to the concept that AD may be the consequence of a basic and systemic defect in the CE cycle. Moreover, our results identify new possible targets for the diagnosis, prevention, and cure or, at least, amelioration of the symptoms of AD

    Physical activity is inversely related to drug consumption in elderly patients with cardiovascular events

    Get PDF
    Abstract Elderly patients with cardiovascular events are characterized by high drug consumptions. Whether high drug consumptions are related to physical activity is not known. In order to examine whether physical activity is related to drug consumption in the elderly, patients older than 65 years (n = 250) with a recent cardiovascular event were studied. Physical activity was analyzed according to the Physical Activity Scale for the Elderly (PASE) score and related to drug consumption. PASE score was 72.4 ± 45.0 and drug consumption was 8.3 ± 2.2. Elderly patients with greater comorbidity took more drugs (8.7 ± 2.1) and are less active (PASE = 64.4 ± 50.6) than patients with Cumulative Illness Rating Scale severity score higher than 1.8 than those with a score lower than 1.8 (76.3 ± 41.4, p < 0.05, and 8.0 ± 2.0, p = 0.006, respectively). Multivariate analysis correlation confirmed that PASE score is negatively associated with drug consumption (β = −0.149, p = 0.031), independently of several variables including comorbidity. Thus, physical activity is inversely related to drug consumption in elderly patients with cardiovascular events. This inverse relationship may be attributable to the high degree of comorbidity observed in elderly patients in whom poor level of physical activity and high drug consumption are predominant
    corecore