18 research outputs found
Localization of hydrogenase in Desulfovibrio gigas cells
International audienc
Molecular dynamics study of Desulfovibrio africanus cytochrome c3 in oxidized and reduced forms.
A 5-ns molecular dynamics study of a tetraheme cytochrome in fully oxidized and reduced forms was performed using the CHARMM molecular modeling program, with explicit water molecules, Langevin dynamics thermalization, Particle Mesh Ewald long-range electrostatics, and quantum mechanical determination of heme partial charges. The simulations used, as starting points, crystallographic structures of the oxidized and reduced forms of the acidic cytochrome c(3) from Desulfovibrio africanus obtained at pH 5.6. In this paper we also report structures for the two forms obtained at pH 8. In contrast to previous cytochrome c(3) dynamics simulations, our model is stable. The simulation structures agree reasonably well with the crystallographic ones, but our models show higher flexibility and the water molecules are more labile. We have compared in detail the differences between the simulated and experimental structures of the two redox states and observe that the hydration structure is highly dependent on the redox state. We have also analyzed the interaction energy terms between the hemes, the protein residues, and water. The direct electrostatic interaction between hemes is weak and nearly insensitive to the redox state, but the remaining terms are large and contribute in a complex way to the overall potential energy differences that we see between the redox states
Energetics of Growth of a Defined Mixed Culture of Desulfovibrio vulgaris and Methanosarcina barkeri: Interspecies Hydrogen Transfer in Batch and Continuous Cultures
Interspecies hydrogen transfer was studied in Desulfovibrio vulgaris-Methanosarcina barkeri mixed cultures. Experiments were performed under batch and continuous growth culture conditions. Lactate or pyruvate was used as an energy source. In batch culture and after 30 days of simultaneous incubation, these organisms were found to yield 1.5 mol of methane and 1.5 mol of carbon dioxide per mol of lactate fermented. When M. barkeri served as the hydrogen acceptor, growth yields of D. vulgaris were higher compared with those obtained on pyruvate without any electron acceptor other than protons. In continuous culture, all of the carbon derived from the oxidation of lactate was recovered as methane and carbon dioxide, provided the dilution rate was minimal. Increasing the dilution rate induced a gradual accumulation of acetate, causing acetate metabolism to cease at above μ = 0.05 h(−1). Under these conditions all of the methane produced originated from carbon dioxide. The growth yields of D. vulgaris were measured when sulfate or M. barkeri was the electron acceptor. Two key observations resulted from the present study. First, although sulfate was substituted by M. barkeri, metabolism of D. vulgaris was only slightly modified. The coculture-fermented lactate produced equimolar quantities of carbon dioxide and methane. Second, acetogenesis and methane formation from acetate were completely separable
Flexibility of thiamine diphosphate revealed by kinetic crystallographic studies of the reaction of pyruvate-ferredoxin oxidoreductase with pyruvate.
International audiencePyruvate-ferredoxin oxidoreductases (PFOR) are unique among thiamine pyrophosphate (ThDP)-containing enzymes in giving rise to a rather stable cofactor-based free-radical species upon the decarboxylation of their first substrate, pyruvate. We have obtained snapshots of unreacted and partially reacted (probably as a tetrahedral intermediate) pyruvate-PFOR complexes at different time intervals. We conclude that pyruvate decarboxylation involves very limited substrate-to-product movements but a significant displacement of the thiazolium moiety of ThDP. In this respect, PFOR seems to differ substantially from other ThDP-containing enzymes, such as transketolase and pyruvate decarboxylase. In addition, exposure of PFOR to oxygen in the presence of pyruvate results in significant inhibition of catalytic activity, both in solution and in the crystals. Examination of the crystal structure of inhibited PFOR suggests that the loss of activity results from oxime formation at the 4' amino substituent of the pyrimidine moiety of ThDP