40 research outputs found

    Radiative cooling of swept up gas in AGN-driven galactic winds and its implications for molecular outflows

    Get PDF
    We recently used hydro-chemical simulations to demonstrate that molecular outflows observed in luminous quasars can be explained by molecule formation within the AGN wind. However, these simulations cover a limited parameter space, due to their computational cost. We have therefore developed an analytic model to follow cooling in the shocked ISM layer of an AGN wind. We explore different ambient densities (1104cm31-10^{4} \, \rm{cm}^{-3}), density profile slopes (01.50-1.5), AGN luminosities (10441047ergs110^{44}-10^{47} \, \rm{erg} \, \rm{s}^{-1}), and metallicities (0.13Z0.1-3 \rm{Z}_{\odot}). The swept up gas mostly cools within ~1 Myr. Based on our previous simulations, we predict that this gas would produce observable molecular outflows. The instantaneous momentum boost initially increases as the outflow decelerates. However, it reaches a maximum of \approx20, due to work done against the gravitational potential. The predicted time-averaged observational estimate of the molecular outflow momentum boost reaches a maximum of 12\approx1-2, partly due to our assumed molecular fraction, 0.2, but also because the instantaneous and observational, time-averaged definitions are not equivalent. Thus recent observational estimates of order unity momentum boosts do not necessarily rule out energy-driven outflows. Finally, we find that dust grains are likely to re-form by accretion of metals after the shocked ISM layer has cooled, assuming that a small fraction of dust grains swept up after this layer has cooled are able to mix into the cool phase, and assuming that grain growth remains efficient in the presence of the strong AGN radiation field. This would enable rapid molecule formation, as assumed in our models.Comment: 22 pages, 16 figures (including appendices). Accepted for publication in MNRA

    The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds

    Get PDF
    We explore the origin of fast molecular outflows that have been observed in Active Galactic Nuclei (AGN). Previous numerical studies have shown that it is difficult to create such an outflow by accelerating existing molecular clouds in the host galaxy, as the clouds will be destroyed before they can reach the high velocities that are observed. In this work, we consider an alternative scenario where molecules form in-situ within the AGN outflow. We present a series of hydro-chemical simulations of an isotropic AGN wind interacting with a uniform medium. We follow the time-dependent chemistry of 157 species, including 20 molecules, to determine whether molecules can form rapidly enough to produce the observed molecular outflows. We find H2_2 outflow rates up to 140 M_\odot yr1^{-1}, which is sensitive to density, AGN luminosity, and metallicity. We compute emission and absorption lines of CO, OH and warm (a few hundred K) H2_2 from the simulations in post-processing. The CO-derived outflow rates and OH absorption strengths at solar metallicity agree with observations, although the maximum line of sight velocities from the model CO spectra are a factor \approx2 lower than is observed. We derive a CO (1-0) to H2_2 conversion factor of αCO(10)\alpha_{\rm{CO} (1-0)} = 0.13 M_\odot (K km s1^{-1} pc2^2)1^{-1}, 6 times lower than is commonly assumed in observations of such systems. We find strong emission from the mid-infrared lines of H2_2. The mass of H2_2 traced by this infrared emission is within a few per cent of the total H2_2 mass. This H2_2 emission may be observable by JWST.Comment: 30 pages, 21 figures (including appendices), resubmitted to MNRAS following referee's report. Some results have changed from the previous version, in particular for warm H2 emission (see Figs. 5 and 13

    Simulations of Jet Heating in Galaxy Clusters: Successes and Challenges

    Full text link
    We study how jets driven by active galactic nuclei influence the cooling flow in Perseus-like galaxy cluster cores with idealised, non-relativistic, hydrodynamical simulations performed with the Eulerian code ATHENA using high-resolution Godunov methods with low numerical diffusion. We use novel analysis methods to measure the cooling rate, the heating rate associated to multiple mechanisms, and the power associated with adiabatic compression/expansion. A significant reduction of the cooling rate and cooling flow within 20 kpc from the centre can be achieved with kinetic jets. However, at larger scales and away from the jet axis, the system relaxes to a cooling flow configuration. Jet feedback is anisotropic and is mostly distributed along the jet axis, where the cooling rate is reduced and a significant fraction of the jet power is converted into kinetic power of heated outflowing gas. Away from the jet axis weak shock heating represents the dominant heating source. Turbulent heating is significant only near the cluster centre, but it becomes inefficient at 50 kpc scales where it only represents a few percent of the total heating rate. Several details of the simulations depend on the choice made for the hydro solver, a consequence of the difficulty of achieving proper numerical convergence for this problem: current physics implementations and resolutions do not properly capture multi-phase gas that develops as a consequence of thermal instability. These processes happen at the grid scale and leave numerical solutions sensitive to the properties of the chosen hydro solver.Comment: Accepted for publication on MNRA

    Key Physical Processes in the Circumgalactic Medium

    Full text link
    Spurred by rich, multi-wavelength observations and enabled by new simulations, ranging from cosmological to sub-pc scales, the last decade has seen major theoretical progress in our understanding of the circumgalactic medium. We review key physical processes in the CGM. Our conclusions include: (1) The properties of the CGM depend on a competition between gravity-driven infall and gas cooling. When cooling is slow relative to free fall, the gas is hot (roughly virial temperature) whereas the gas is cold (T~10^4 K) when cooling is rapid. (2) Gas inflows and outflows play crucial roles, as does the cosmological environment. Large-scale structure collimates cold streams and provides angular momentum. Satellite galaxies contribute to the CGM through winds and gas stripping. (3) In multiphase gas, the hot and cold phases continuously exchange mass, energy and momentum. The interaction between turbulent mixing and radiative cooling is critical. A broad spectrum of cold gas structures, going down to sub-pc scales, arises from fragmentation, coagulation, and condensation onto gas clouds. (4) Magnetic fields, thermal conduction and cosmic rays can substantially modify how the cold and hot phases interact, although microphysical uncertainties are presently large. Key open questions for future work include the mutual interplay between small-scale structure and large-scale dynamics, and how the CGM affects the evolution of galaxies.Comment: 69 pages, 13 figures. Accepted for publication in Annual Review of Astronomy and Astrophysics. Authors' draft. Edited version will appear in the next volum

    The formation of massive, quiescent galaxies at cosmic noon

    Get PDF
    The cosmic noon (z~1.5-3) marked a period of vigorous star formation for most galaxies. However, about a third of the more massive galaxies at those times were quiescent in the sense that their observed stellar populations are inconsistent with rapid star formation. The reduced star formation activity is often attributed to gaseous outflows driven by feedback from supermassive black holes, but the impact of black hole feedback on galaxies in the young Universe is not yet definitively established. We analyze the origin of quiescent galaxies with the help of ultra-high resolution, cosmological simulations that include feedback from stars but do not model the uncertain consequences of black hole feedback. We show that dark matter halos with specific accretion rates below ~0.25-0.4 per Gyr preferentially host galaxies with reduced star formation rates and red broad-band colors. The fraction of such halos in large dark matter only simulations matches the observed fraction of massive quiescent galaxies (~10^10-10^11 Msun). This strongly suggests that halo accretion rate is the key parameter determining which massive galaxies at z~1.5-3 become quiescent. Empirical models that connect galaxy and halo evolution, such as halo occupation distribution or abundance matching models, assume a tight link between galaxy properties and the masses of their parent halos. These models will benefit from adding the specific accretion rate of halos as a second model parameter.Comment: 5 pages, 5 figures, to appear in MNRAS Letter

    Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy

    Get PDF
    We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron star (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H]<-2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or stars that are outliers in their r-process abundance ratios are, on average, formed at high redshift and located at large galactocentric radius. Because NS mergers are rare, our results are not fully converged with respect to resolution, particularly at low metallicity. However, the uncertain rate and delay time distribution of NS mergers introduces an uncertainty in the r-process abundances comparable to that due to finite numerical resolution. Overall, our results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe.Comment: Accepted for publication in MNRAS, 10 pages and 4 figures. Revised version: minor change
    corecore