9 research outputs found

    Thymic-Shared Antigen-1 (TSA-1) A Lymphostromal Cell Membrane Ly-6 Superfamily Molecule with a Putative Role in Cellular Adhesion

    Get PDF
    The seeding and colonization of the thymus by bone marrow stem cells and the maturation of these cells into mature T lymphocytes are dependent on cell-surface recognition events between different cell lineages within the thymic microenvironment. Positive and negative selection processes within the thymus produce a peripheral T-cell repertoire capable of recognizing peptides derived from foreign antigen bound to self MHC molecules. In addition to the TCR/ MHC-peptide interaction, many other cell-surface molecules act in concert to regulate the kinetics of cellular interactions and intracellular signaling events during thymopoiesis. We have investigated the complexity of the thymic stroma by using monoclonal antibodies to clone cellmembrane molecules of thymic stromal cells. Thymic-shared antigen-1 (TSA-1) is a molecule of interest because it is expressed by both immature thymocytes and stromal cells. We report herein the structural and evolutionary relationships between TSA-1 and molecules of the Ly-6 superfamily (Ly-6SF), and present evidence that TSA-1 functions as a cell-surface receptor by binding a cognate cell target molecule on the surface of a subset of thymocytes

    High-Affinity Small Molecule Inhibitors of T Cell Costimulation: Compounds for Immunotherapy

    Get PDF
    SummaryCostimulatory molecules are important regulators of T cell activation and thus favored targets for therapeutic manipulation of immune responses. One of the key costimulatory receptors is CD80, which binds the T cell ligands, CD28, and CTLA-4. We describe a set of small compounds that bind with high specificity and low nanomolar affinity to CD80. The compounds have relatively slow off-rates and block both CD28 and CTLA-4 binding, implying that they occlude the shared ligand binding site. The compounds inhibit proinflammatory cytokine release in T cell assays with submicromolar potency, and as such, they represent promising leads for the development of novel therapeutics for immune-mediated inflammatory disease. Our results also suggest that other predominantly β proteins, such as those that dominate the cell surface, may also be accessible as potentially therapeutic targets

    Dendritic cells generated from patients with androgen-independent prostate cancer are not impaired in migration and T-cell stimulation

    No full text
    BACKGROUND Dendritic cell (DC)-based vaccination has been investigated as immunotherapy for several types of cancer. A potential drawback to vaccination with autologous monocyte-derived DCs (MoDCs) could be that MoDCs from patients are functionally impaired. In case of androgen-independent prostate cancer (CaP), the cancer itself, diverse prior therapies, and the hormone manipulation may affect the immune system.METHODS. MoDCs from patients suffering from androgen-independent CaP were generated according to a clinically applicable protocol to evaluate the phenotype, maturation capacity, migration, and T-cell stimulation of these cells compared with those generated from tumor-free donors.RESULTS MoDCs generated from CaP patients could be fully matured and efficiently migrated towards the chemokine CCL21. They had a strong potency to activate allogeneicCD4þ and CD8þ T-cells and to present antigens to specific CTL.CONCLUSIONS Our data suggest that MoDCs from patients with androgen-independent CaP are functionally intact and hence qualify as cellular vaccines for immunotherapy of advanced stage CaP

    Essential Role for the Lymphostromal Plasma Membrane Ly-6 Superfamily Molecule Thymic Shared Antigen 1 in Development of the Embryonic Adrenal Gland

    No full text
    Thymic shared antigen 1 (TSA-1) is a plasma membrane protein of the Ly-6 superfamily expressed on thymocytes, thymic stromal cells, and other cells of the hematopoietic system. TSA-1 is also expressed in other nonhematopoietic tissues, in particular, embryonic and adult adrenal glands. To address the function of TSA-1, we generated mutant mice in which TSA-1 expression was inactivated by gene targeting. Here we show that deletion of both TSA-1 alleles results in abnormal adrenal gland development and midgestational lethality due to cardiac abnormalities. We also report that TSA-1-deficient adrenal glands have significantly reduced levels of the catecholamines noradrenaline and adrenaline. We conclude that TSA-1 is required for normal embryonic development but that deletion of its expression does not obviously impair lymphoid development
    corecore