57 research outputs found

    Increased gravitational force reveals the mechanical, resonant nature of physiological tremor

    Get PDF
    Human physiological hand tremor has a resonant component. Proof of this is that its frequency can be modified by adding mass. However, adding mass also increases the load which must be supported. The necessary force requires muscular contraction which will change motor output and is likely to increase limb stiffness. The increased stiffness will partly offset the effect of the increased mass and this can lead to the erroneous conclusion that factors other than resonance are involved in determining tremor frequency. Using a human centrifuge to increase head-to-foot gravitational field strength, we were able to control for the increased effort by increasing force without changing mass. This revealed that the peak frequency of human hand tremor is 99% predictable on the basis of a resonant mechanism. We ask what, if anything, the peak frequency of physiological tremor can reveal about the operation of the nervous system.This work was funded by a BBSRC Industry Interchange Award to J.P.R.S. and R.F.R. C.J.O. was funded by BBSRC grant BB/I00579X/1. C.A.V. was funded by A∗Midex (Aix-Marseille Initiative of Excellence

    In vivo determination of the diclofenac skin reservoir: comparison between passive, occlusive, and iontophoretic application

    No full text
    Ron Clijsen,1,2 Jean Pierre Baeyens,2 André Odilon Barel,2 Peter Clarys2 1Department of Health Sciences, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; 2Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium Aim: There is scarce information concerning the pharmacodynamic behavior of topical substances used in the physiotherapy setting. The aim of the present study was to estimate the formation and emptying of the diclofenac (DF) skin reservoir after passive, semiocclusive, and electrically assisted applications of DF.Subjects and methods: Five different groups of healthy volunteers (ntotal=60, 23 male and 37 female), participated in this study. A 1% DF (Voltaren Emulgel) formulation (12 mg) was applied on the volar forearms on randomized defined circular skin areas of 7 cm2. DF was applied for 20 minutes under three different conditions at the same time. The presence of DF in the skin results in a reduction of the methyl nicotinate (MN) response. To estimate the bioavailability of DF in the skin, MN responses at different times following initial DF application (1.5, 6, 24, 32, 48, 72, 96, and 120 hours) were analyzed.Results: At 1.5 hours after the initial DF application, a significant decrease in MN response was detected for the occluded and iontophoretic delivery. Passive application resulted in a decrease of the MN response from 6 hours post-DF application. The inhibition remained up to 32 hours post-DF application for the iontophoretic delivery, 48 hours for the occluded application, and 72 hours for the passive delivery. At 96 and 120 hours post-DF application none of the MN responses was inhibited.Conclusion: The formation and emptying of a DF skin reservoir was found to be dependent on the DF-application mode. Penetration-enhanced delivery resulted in a faster emptying of the reservoir. Keywords: transdermal drug delivery, passive diffusion, occlusion, iontophoresis, diclofena

    The effect of local cryotherapy on subjective and objective recovery characteristics following an exhaustive jump protocol

    No full text
    Erich Hohenauer,1-3 Peter Clarys,3 Jean-Pierre Baeyens,2-4 Ron Clijsen,1-31Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; 2University College Physiotherapy, Thim van der Laan, Landquart, Switzerland; 3Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; 4Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, BelgiumAbstract: The purpose of this controlled trial was to investigate the effects of a single local cryotherapy session on the recovery characteristics over a period of 72 hours. Twentytwo young and healthy female (n=17; mean age: 21.9±1.1 years) and male (n=5;mean age:25.4±2.8 years) adults participated in this study. Following an exhaustive jump protocol (3×30 countermovement jumps), half of the participants received either a single local cryotherapy application (+8°C) or a single local thermoneutral application (+32°C) of 20-minute duration using two thigh cuffs. Subjective measures of recovery (delayed-onset muscle soreness and ratings of perceived exertion) and objective measures of recovery (vertical jump performanceand peak power output) were assessed immediately following the postexercise applications (0 hours) and at 24 hours, 48 hours, and 72 hours after the jump protocol. Local cryotherapy failed to significantly affect any subjective recovery variable during the 72-hour recovery period (P>0.05). After 72 hours, the ratings of perceived exertion were significantly lower in the thermoneutral group compared to that in the cryotherapy group (P=0.002). No significant differences were observed between the cryotherapy and the thermoneutral groups with respect to any of the objective recovery variables. In this experimental study, a 20-minute cryotherapy cuff application failed to demonstrate a positive effect on any objective measures of recovery. The effects of local thermoneutral application on subjective recovery characteristics were superior when compared to the effects of local cryotherapy application at 72 hours postapplication. Keywords: cryotherapy, cold cuff, muscle damage, recover

    Wrist stabilisation and forearm muscle coactivation during freestyle swimming

    No full text
    The aim of this study was to evaluate the stabilisation of the wrist joint and the ad hoc wrist muscles activations during the two principal phases of the freestyle stroke. Seven male international swimmers performed a maximal semi-tethered power test. A swimming ergometer fixed on the start area of the pool was used to collect maximal power. The electromyography signal (EMG) of the right flexor carpi ulnaris (FCU) and extensor carpi ulnaris (ECU) was recorded with surface electrodes and processed using the integrated EMG (IEMG). Frontal and sagittal video views were digitised frame by frame to determine the wrist angle in the sagittal plane and the principal phases of the stroke (insweep, outsweep). Important stabilisation of the wrist and high antagonist muscle activity were observed during the insweep phase due to the great mechanical constraints. In outsweep, less stabilisation and lower antagonist activities were noted. Factors affecting coactivations in elementary movements, e.g. intensity and instability of the load, accuracy and economy of the movement were confirmed in complex aquatic movement
    • 

    corecore