6 research outputs found

    A lupine (Lupinus angustifolious L.) peptide prevents non-alcoholic fatty liver disease in high-fat-diet-induced obese mice

    Get PDF
    Bioactive peptides are related to the prevention and treatment of many diseases. GPETAFLR is an octapeptide that has been isolated from lupine (Lupinus angustifolius L.) and shows anti-inflammatory properties. The aim of this study was to evaluate the potential activity of GPETAFLR to prevent non-alcoholic fatty liver disease (NAFLD) in high-fat-diet (HFD)-induced obese mice. C57BL/6J mice were fed a standard diet or HFD. Two of the groups fed the HFD diet were treated with GPETAFLR in drinking water at 0.5 mg kg-1 day-1 or 1 mg kg-1 day-1. To determine the ability of GPETAFLR to improve the onset and progression of non-alcoholic fatty liver disease, histological studies, hepatic enzyme profiles, inflammatory cytokine and lipid metabolism-related genes and proteins were analysed. Our results suggested that HFD-induced inflammatory metabolic disorders were alleviated by treatment with GPETAFLR. In conclusion, dietary lupine consumption can repair HFD-induced hepatic damage possibly via modifications of liver's lipid signalling pathways

    Pomace Olive Oil Concentrated in Triterpenic Acids Restores Vascular Function, Glucose Tolerance and Obesity Progression in Mice

    Get PDF
    Pomace olive oil, an olive oil sub-product, is a promising source of bioactive triterpenoids such as oleanolic acid and maslinic acid. Considering the vascular actions of pomace olive oil and the potential effects of the isolated oleanolic acid on metabolic complications of obesity, this study investigates for the first time the dietary intervention with a pomace olive oil with high concentrations of the triterpenic acids (POCTA), oleanolic and maslinic acid, during diet-induced obesity in mice. The results demonstrate that obese mice, when switched to a POCTA-diet for 10 weeks, show a substantial reduction of body weight, insulin resistance, adipose tissue inflammation, and particularly, improvement of vascular function despite high caloric intake. This study reveals the potential of a functional food based on pomace olive oil and its triterpenic fraction against obesity progression. Our data also contribute to understanding the health-promoting effects attributable to the Mediterranean dietSpanish Ministerio de Economía, Industria y Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER) (Grants SAF2017-82813-C3-3-R and PCI2018-092997/AEI to R.R.-R.

    Nutraceutical Extract from Dulse (Palmaria palmata L.) Inhibits Primary Human Neutrophil Activation

    Get PDF
    Palmaria palmata L. (Palmariaceae), commonly known as "dulse", is a red alga that grows on the northern coasts of the Atlantic and Pacific oceans, and is widely used as source of fiber and protein. Dulse is reported to contain anti-inflammatory and antioxidant compounds, albeit no study has investigated these effects in primary human neutrophils. Implication strategies to diminish neutrophil activation have the potential to prevent pathological states. We evaluated the ability of a phenolic dulse extract (DULEXT) to modulate the lipopolysaccharide (LPS)-mediated activation of primary human neutrophils. Intracellular reactive oxygen species (ROS) were measured by fluorescence analysis and nitric oxide (NO) production using the Griess reaction. Inflammatory enzymes and cytokines were detected by ELISA and RT-qPCR. The results show that DULEXT diminished the neutrophil activation related to the down-regulation of TLR4 mRNA expression, deceased gene expression and the LPS-induced release of the chemoattractant mediator IL-8 and the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α. ROS, NO, and myeloperoxidase (MPO) were also depressed. The data indicated that DULEXT has the potential to disrupt the activation of human primary neutrophils and the derived inflammatory and prooxidant conditions, and suggest a new role for Palmaria palmata L. in the regulation of the pathogenesis of health disorders in which neutrophils play a key role, including atherosclerosisSpanish Ministry of Science, Innovation and Universities grant CYTED-2019 119RT056

    Molecular Mechanisms Underlying the Effects of Olive Oil Triterpenic Acids in Obesity and Related Diseases

    No full text
    Dietary components exert protective effects against obesity and related metabolic and cardiovascular disturbances by interfering with the molecular pathways leading to these pathologies. Dietary biomolecules are currently promising strategies to help in the management of obesity and metabolic syndrome, which are still unmet medical issues. Olive oil, a key component of the Mediterranean diet, provides an exceptional lipid matrix highly rich in bioactive molecules. Among them, the pentacyclic triterpenic acids (i.e., oleanolic acid) have gained clinical relevance in the last decade due to their wide range of biological actions, particularly in terms of vascular function, obesity and insulin resistance. Considering the promising effects of these triterpenic compounds as nutraceuticals and components of functional foods against obesity and associated complications, the aim of our review is to decipher and discuss the main molecular mechanisms underlying these effects driven by olive oil triterpenes, in particular by oleanolic acid. Special attention is paid to their signaling and targets related to glucose and insulin homeostasis, lipid metabolism, adiposity and cardiovascular dysfunction in obesity. Our study is aimed at providing a better understanding of the impact of dietary components of olive oil in the long-term management of obesity and metabolic syndrome in humans

    Acyclic Diterpene Phytol from Hemp Seed Oil (Cannabis sativa L.) Exerts Anti-Inflammatory Activity on Primary Human Monocytes-Macrophages

    No full text
    Seeds from non-drug varieties of hemp (Cannabis sativa L.) have been used for traditional medicine, food, and fiber production. Our study shows that phytol obtained from hemp seed oil (HSO) exerts anti-inflammatory activity in human monocyte-macrophages. Fresh human monocytes and human macrophages derived from circulating monocytes were used to evaluate both plasticity and anti-inflammatory effects of phytol from HSO at 10–100 mM using FACS analysis, ELISA, and RT-qPCR methods. The quantitative study of the acyclic alcohol fraction isolated from HSO shows that phytol is the most abundant component (167.59 ± 1.81 mg/Kg of HSO). Phytol was able to skew monocyte-macrophage plasticity toward the anti-inflammatory non-classical CD14+CD16++ monocyte phenotype and toward macrophage M2 (CD200Rhigh and MRC-1high), as well as to reduce the production of IL-1β, IL-6, and TNF-α, diminishing the inflammatory competence of mature human macrophages after lipopolysaccharide (LPS) treatment. These findings point out for the first time the reprogramming and anti-inflammatory activity of phytol in human monocyte-macrophages. In addition, our study may help to understand the mechanisms by which phytol from HSO contributes to the constant and progressive plasticity of the human monocyte-macrophage linage
    corecore