41,534 research outputs found

    A co-operating solver approach to building simulation

    Get PDF
    This paper describes the co-operating solver approach to building simulation as encapsulated within the ESP-r system. Possible adaptations are then considered to accommodate new functional requirements

    Development of a contra-rotating tidal current turbine and analysis of performance

    Get PDF
    A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. Highfrequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials

    Design and testing of a contra-rotating tidal current turbine

    Get PDF
    A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. High-frequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials

    Direct to consumer advertising via the Internet, a study of hip resurfacing

    Get PDF
    With increased use of the internet for health information and direct to consumer advertising from medical companies, there is a concern about the quality of the information available for patients. The aim of this study was to examine the quality of health information on the internet for hip resurfacing. An assessment tool was designed to measure quality of information. Websites were measured on credibility of source; usability; currentness of the information; content relevance; content accuracy/completeness and disclosure/bias. Each website assessed was given a total score, based on number of scores achieved from the above categories websites were further analysed on author, geographical origin and possession of an independent credibility check. There was positive correlation between the overall score for the website and the score of each website in each assessment category. Websites by implant companies, doctors and hospitals scored poorly. Websites with an independent credibility check such as Health on the Net (HoN) scored twice the total scores of websites without. Like other internet health websites, the quality of information on hip resurfacing websites is variable. This study highlights methods by which to assess the quality of health information on the internet and advocates that patients should look for a statement of an "independent credibility check" when searching for information on hip resurfacing

    Nonlocal hydrodynamic influence on the dynamic contact angle: Slip models versus experiment

    Get PDF
    Experiments reported by Blake et al. [Phys. Fluids. 11, 1995 (1999)] suggest that the dynamic contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends on the flow field/geometry near the moving contact line. The present paper examines quantitatively whether or not it is possible to attribute this effect to bending of the free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of the so-called ``apparent'' contact angle. It is shown that this is not the case. Numerical analysis of the problem demonstrates that, at the spatial resolution reported in the experiments, the variations of the ``apparent'' contact angle (defined in two different ways) caused by variations in the flow field, at a fixed contact-line speed, are too small to account for the observed effect. The results clearly indicate that the actual (macroscopic) dynamic contact angle, i.e.\ the one used in fluid mechanics as a boundary condition for the equation determining the free surface shape, must be regarded as dependent not only on the contact-line speed but also on the flow field/geometry in the vicinity of the moving contact line

    Influence of Charge and Energy Imbalances on the Tunneling Current through a Superconductor-Normal Metal Junction

    Full text link
    We consider quasiparticle charge and energy imbalances in a thin superconductor weakly coupled with two normal-metal electrodes via tunnel junctions at low temperatures. Charge and energy imbalances, which can be created by injecting quasiparticles at one junction, induce excess tunneling current IexI_{\rm ex} at the other junction. We numerically obtain IexI_{\rm ex} as a function of the bias voltage VdetV_{\rm det} across the detection junction. We show that IexI_{\rm ex} at the zero bias voltage is purely determined by the charge imbalance, while the energy imbalance causes a nontrivial VdetV_{\rm det}-dependence of IexI_{\rm ex}. The obtained voltage-current characteristics qualitatively agree with the experimental result by R. Yagi [Phys. Rev. B {\bf 73} (2006) 134507].Comment: 10 pages, 5 figure

    Interchain coherence of coupled Luttinger liquids at all orders in perturbation theory

    Full text link
    We analyze the problem of Luttinger liquids coupled via a single-particle hopping \tp and introduce a systematic diagrammatic expansion in powers of \tp. An analysis of the scaling of the diagrams at each order allows us to determine the power-law behavior versus \tp of the interchain hopping and of the Fermi surface warp. In particular, for strong interactions, we find that the exponents are dominated by higher-order diagrams producing an enhanced coherence and a failure of linear-response theory. Our results are valid at any finite order in \tp for the self-energy.Comment: 4 pages, 3 ps figures. Accepted for publication in Phys. Rev. Let

    Creating citizen-consumers? Public service reform and (un)willing selves

    No full text
    About the book: Postmodern theories heralded the "death of the subject", and thereby deeply contested our intuition that we are free and willing selves. In recent times, the (free) will has come under attack yet again. Findings from the neuro- and cognitive sciences claim the concept of will to be scientifically untenable, specifying that it is our brain rather than our 'self' which decides what we want to do. In spite of these challenges however, the willing self has come to take centre stage in our society: juridical and moral practices ascribing guilt, or the organization of everyday life attributing responsibilities, for instance, can hardly be understood without taking recourse to the willing subject. In this vein, the authors address topics such as the genealogy of the concept of willing selves, the discourse on agency in neuroscience and sociology, the political debate on volition within neoliberal and neoconservative regimes, approaches toward novel forms of relational responsibility as well as moral evaluations in conceptualizing autonomy

    Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry

    Full text link
    We report the use of an atomic magnetometer based on nonlinear magneto-optical rotation with frequency modulated light (FM NMOR) to detect nuclear magnetization of xenon gas. The magnetization of a spin-exchange-polarized xenon sample (1.71.7 cm3^3 at a pressure of 55 bar, natural isotopic abundance, polarization 1%), prepared remotely to the detection apparatus, is measured with an atomic sensor (which is insensitive to the leading field of 0.45 G applied to the sample; an independent bias field at the sensor is 140ÎŒ140 \muG). An average magnetic field of ∌10\sim 10 nG induced by the xenon sample on the 10-cm diameter atomic sensor is detected with signal-to-noise ratio ∌10\sim 10, limited by residual noise in the magnetic environment. The possibility of using modern atomic magnetometers as detectors of nuclear magnetic resonance and in magnetic resonance imaging is discussed. Atomic magnetometers appear to be ideally suited for emerging low-field and remote-detection magnetic resonance applications.Comment: 4 pages, 4 figure

    Absence of strong magnetic fluctuations in the iron phosphide superconductors LaFePO and Sr2ScO3FeP

    Full text link
    We report neutron inelastic scattering measurements on polycrystalline LaFePO and Sr2ScO3FeP, two members of the iron phosphide families of superconductors. No evidence is found for any magnetic fluctuations in the spectrum of either material in the energy and wavevector ranges probed. Special attention is paid to the wavevector at which spin-density-wave-like fluctuations are seen in other iron-based superconductors. We estimate that the magnetic signal, if present, is at least a factor of four (Sr2ScO3FeP) or seven (LaFePO) smaller than in the related iron arsenide and chalcogenide superconductors. These results suggest that magnetic fluctuations are not as influential on the electronic properties of the iron phosphide systems as they are in other iron-based superconductors.Comment: 7 pages, 5 figure
    • 

    corecore