31,886 research outputs found

    Active galactic nucleus feedback in clusters of galaxies

    Full text link
    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.Comment: Refereed review article published in Chandra's First Decade of Discovery Special Feature edition of the Proceedings of the National Academy of Science

    Magnetic Field Induced Charge Instabilities in Weakly Coupled Superlattices

    Full text link
    Using a time dependent selfconsistent model for vertical sequential tunneling,we study the appearance of charge instabilities that lead to the formation of electric field domains in a weakly coupled doped superlattice in the presence of high magnetic fields parallel to the transport direction. The interplay between the high non linearity of the system --coming from the Coulomb interaction-- and the inter-Landau-level scattering at the domain walls (regions of charge accumulation inside the superlattice) gives rise to new unstable negative differential conductance regions and extra stable branches in the sawtooth-like I-V curves.Comment: 5 pages, 4 postscript figure

    Heralded state preparation in a superconducting qubit

    Full text link
    We demonstrate high-fidelity, quantum nondemolition, single-shot readout of a superconducting flux qubit in which the pointer state distributions can be resolved to below one part in 1000. In the weak excitation regime, continuous measurement permits the use of heralding to ensure initialization to a fiducial state, such as the ground state. This procedure boosts readout fidelity to 93.9% by suppressing errors due to spurious thermal population. Furthermore, heralding potentially enables a simple, fast qubit reset protocol without changing the system parameters to induce Purcell relaxation.Comment: 5 pages, 5 figure

    Side Scan Versus Multibeam Echosounder Object Detection: A Comparative Analysis

    Get PDF
    The undisputed remote sensing tool for detailed sea floor object detection is the side scan sonar. From pipelines, to downed aircraft, to mines, a side scan sonar’s unique characteristics effectively ensonify and subsequently display these objects. For bathymetry, the Multibeam Echosounder (MBES) has quickly proven its superior capabilities. An MBES’s unique characteristics allow it to provide 100 per cent ensonification of the sea floor while meeting or even exceeding IHO specifications. During the 1997 Coastal Multibeam Sonar Training Course in Victoria, BC, inert mines were laid at different depths and then ensonified by a side scan sonar and an MBES. The aim of this exercise was to compare the detection characteristics of the two sonars using one of the inert mines. This paper is a discussion of that comparison and the lessons learned. Comparative imagery is used to illustrate the success of each sonar in illuminating the mines to the operator. Unaided visual detection is not always the most efficient method for finding objects in large quantities of MBES data; therefore, subtractive temporal analysis was implemented in order to enhance the MBES object detection process. As well, a simple automated detection algorithm was used successfully on the temporally differenced images. The background, implementation and results of the MBES subtractive analysis performed in the area of the inert mine will be compared to the detection achieved using the side scan sonar. Finally, conclusions will be drawn as to the efficacy of the MBES as an object detection sonar

    The role of proton precipitation in Jovian aurora: Theory and observation

    Get PDF
    It was proposed that the Jovian auroral emissions observed by Voyager spacecraft could be explained by energetic protons precipitating into the upper atmosphere of Jupiter. Such precipitation of energetic protons results in Doppler-shifted Lyman alpha emission that can be quantitatively analyzed to determine the energy flux and energy distribution of the incoming particle beam. Modeling of the expected emission from a reasonably chosen Voyager energetic proton spectrum can be used in conjunction with International Ultraviolet Explorer (IUE) observations, which show a relative lack of red-shifted Lyman alpha emission, to set upper limits on the amount of proton precipitation taking place in the Jovian aurora. Such calculations indicate that less than 10 percent of the ultraviolet auroral emissions at Jupiter can be explained by proton precipitation

    Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom

    Full text link
    We consider the problem of verifying deadlock freedom for symmetric cache coherence protocols. In particular, we focus on a specific form of deadlock which is useful for the cache coherence protocol domain and consistent with the internal definition of deadlock in the Murphi model checker: we refer to this deadlock as a system- wide deadlock (s-deadlock). In s-deadlock, the entire system gets blocked and is unable to make any transition. Cache coherence protocols consist of N symmetric cache agents, where N is an unbounded parameter; thus the verification of s-deadlock freedom is naturally a parameterized verification problem. Parametrized verification techniques work by using sound abstractions to reduce the unbounded model to a bounded model. Efficient abstractions which work well for industrial scale protocols typically bound the model by replacing the state of most of the agents by an abstract environment, while keeping just one or two agents as is. However, leveraging such efficient abstractions becomes a challenge for s-deadlock: a violation of s-deadlock is a state in which the transitions of all of the unbounded number of agents cannot occur and so a simple abstraction like the one above will not preserve this violation. In this work we address this challenge by presenting a technique which leverages high-level information about the protocols, in the form of message sequence dia- grams referred to as flows, for constructing invariants that are collectively stronger than s-deadlock. Efficient abstractions can be constructed to verify these invariants. We successfully verify the German and Flash protocols using our technique

    Flexible Buffer Materials to Reduce Contact Resistance in Thermal Insulation Measurements

    Get PDF
    Thermal insulation test methods approach their lower limits as thermal resistance falls below 0.1 m2⋅K/W. This is the minimum value specified in ASTM C 518 (ASTM International, 2010b) while ASTM C 177 (ASTM International, 2010a) proposes about 0.06 m2⋅K/W. Nevertheless these are the test methods, along with their ISO equivalents, required by Australasian building codes and directed at many products and materials with thermal resistance on the low side of 0.1 m2⋅K/W. Alternatives, such as ASTM E 1530 (ASTM International, 2011), cover much lower resistances but require carefully prepared small specimens and very-high contact pressures and are therefore largely unsuitable for both technical and compliance reasons. For these low resistances, the insulation test methods face large errors because of interface resistance between specimen and the apparatus hot and cold plates. Staying with C 518, the problem can be avoided by using direct measurement of the test specimen surface temperatures, but this is difficult, has its own accuracy issues, and is often impractical for commercial laboratories. This technique is generally used in conjunction with interface materials such as flexible foam between the specimen and the hot and cold plates, to enhance contact and also provide an access path for temperature sensors. The alternative prospect of using these interface materials to ensure good specimen contact has been studied, in conjunction with a simple two-step thermal resistance determination based on the difference between presence and absence of the test specimen. This article presents results of a study using this difference approach for the measurement of 12 highly conducting materials, including sheets of aluminum, phenolic, HDPE, MgO, bonded rubber and cork granules, PMMA, and compressed wood fiber. For each material, repeated measurements have been performed with four different interface or “buffer” materials: PVC, silicone, EVA, and nitrile. Silicone sponge provides the most uniform results, consistent with a measurably lower hysteresis. The difference technique yielded a lower indicated thermal resistance than direct measurement by between 0.003 and 0.01 m2⋅K/W, with some variation depending on the specimen surface characteristics and to a lesser extent on the choice of buffer. Larger differences were associated with bowed, uneven or roughly surfaced specimens. The difference-technique results have greater variability, but they may be seen as better estimates of the actual specimen resistance, as contact resistance is much lower for soft-surface interfaces. An interface resistance of up to 0.01 m2⋅K/W is large enough to be of significance in many thermal measurements

    Type I insulin-like growth factor receptor gene expression in normal human breast tissue treated with oestrogen and progesterone.

    Get PDF
    The epithelial proliferation of normal human breast tissue xenografts implanted into athymic nude mice is significantly increased from basal levels by oestradiol (E2), but not progesterone (Pg) treatment at serum concentrations similar to those observed in the luteal phase of the human menstrual cycle. Type I IGF receptor (IGFR-I) mRNA and protein have been shown to be up-regulated by E2 in MCF-7 breast cancer cells in vitro in which IGF-I and E2 act synergistically to stimulate proliferation. We have investigated the expression of the IGFR-I mRNA in normal human breast xenografts treated with or without E2 or Pg alone and in combination. Northern analysis of 20 micrograms of RNA extracted from the breast xenograft samples showed no hybridization with 32P-labelled IGFR-I probe, although an 11-kb species of IGFR-I mRNA could be seen when 20 micrograms of RNA extracted from either MCF-7 breast cancer cells or human breast carcinomas was examined in this way. In order to analyse the expression of IGFR-I mRNA in breast xenografts, a quantitative reverse transcription-polymerase chain reaction (RT-PCR) was employed in which RNA loading, reverse transcription and PCR efficiencies were internally controlled. The data indicate that the IGFR-I mRNA is up-regulated by two to threefold compared with untreated levels by 7 and 14 days E2 treatment. In contrast, 7 or 14 days Pg treatment down-regulates the receptor mRNA to approximately half that of untreated levels, whereas combination E2 and Pg treatment produced a twofold increase in IGFR-I mRNA levels compared with untreated tissue. The results are consistent with the suggestion that E2 may act to stimulate proliferation indirectly via a paracrine mechanism involving IGFs in normal as well as malignant human breast epithelial cells

    A Short Counterexample Property for Safety and Liveness Verification of Fault-tolerant Distributed Algorithms

    Full text link
    Distributed algorithms have many mission-critical applications ranging from embedded systems and replicated databases to cloud computing. Due to asynchronous communication, process faults, or network failures, these algorithms are difficult to design and verify. Many algorithms achieve fault tolerance by using threshold guards that, for instance, ensure that a process waits until it has received an acknowledgment from a majority of its peers. Consequently, domain-specific languages for fault-tolerant distributed systems offer language support for threshold guards. We introduce an automated method for model checking of safety and liveness of threshold-guarded distributed algorithms in systems where the number of processes and the fraction of faulty processes are parameters. Our method is based on a short counterexample property: if a distributed algorithm violates a temporal specification (in a fragment of LTL), then there is a counterexample whose length is bounded and independent of the parameters. We prove this property by (i) characterizing executions depending on the structure of the temporal formula, and (ii) using commutativity of transitions to accelerate and shorten executions. We extended the ByMC toolset (Byzantine Model Checker) with our technique, and verified liveness and safety of 10 prominent fault-tolerant distributed algorithms, most of which were out of reach for existing techniques.Comment: 16 pages, 11 pages appendi
    • …
    corecore