1,567 research outputs found

    Nuclei contain two differentially regulated pools of diacylglycerol

    Get PDF
    AbstractA number of recent studies have highlighted the presence of a nuclear pool of inositol lipids [1,2] that is regulated during progression through the cell cycle [1,3], differentiation [1,2] and after DNA damage [2], suggesting that a number of different regulatory pathways impinge upon this pool of lipids. It has been suggested that the downstream consequence of the activation of one of these nuclear phosphoinositide (PI) regulatory pathways is the generation of nuclear diacylglycerol (DAG) [1,3,4], which is important in the activation of nuclear protein kinase C (PKC) [5–7]. Activation of PKC in turn appears to regulate the progression of cells through G1 and into S phase [4] and through G2 to mitosis [3,8–11]. Although the evidence is enticing, there is as yet no direct demonstration that nuclear PIs can be hydrolysed to generate nuclear DAG. Previous data in murine erythroleukemia (MEL) cells have suggested that nuclear phosphoinositidase Cβ1 (PIC-β1) activity is important in the generation of nuclear DAG. Here, we demonstrate that the molecular species of nuclear DAG bears little resemblance to the PI pool and is unlikely to be generated directly by hydrolysis of these inositol lipids. Further, we show that there are in fact two distinct subnuclear pools of DAG; one that is highly disaturated and mono-unsaturated (representing more than 90% of the total nuclear DAG) and one that is highly polyunsaturated and is likely to be derived from the hydrolysis of PI. Analysis of these pools, either after differentiation or during cell-cycle progression, suggests that the pools are independently regulated, possibly by the regulation of two different nuclear phospholipase Cs (PLCs)

    Exploring phosphatidylinositol 5-phosphate 4-kinase function.

    Get PDF
    The family of phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) is emerging from a comparative backwater in inositide signalling into the mainstream, as is their substrate, phosphatidylinositol 5-phosphate (PI5P). Here we review some of the key questions about the PI5P4Ks, their localisation, interaction, and regulation and also we summarise our current understanding of how PI5P is synthesised and what its cellular functions might be. Finally, some of the evidence for the involvement of PI5P4Ks in pathology is discussed.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jbior.2014.09.00

    Effects of lipid kinase expression and cellular stimuli on phosphatidylinositol 5-phosphate levels in mammalian cell lines

    Get PDF
    AbstractPhosphatidylinositol 5-phosphate (PtdIns5P) is a relatively recently discovered inositol lipid whose metabolism and functions are not yet clearly understood. We have transfected cells with a number of enzymes that are potentially implicated in the synthesis or metabolism of PtdIns5P, or subjected cells to a variety of stimuli, and then measured cellular PtdIns5P levels by a specific mass assay. Stable or transient overexpression of Type IIα PtdInsP kinase, or transient overexpression of Type Iα or IIβ PtdInsP kinases caused no significant change in cellular PtdIns5P levels. Similarly, subjecting cells to oxidative stress or EGF stimulation had no significant effect on PtdIns5P, but stimulation of HeLa cells with a phosphoinositide-specific PLC-coupled agonist, histamine, caused a 40% decrease within 1min. Our data question the degree to which inositide kinases regulate PtdIns5P levels in cells, and we discuss the possibility that a significant part of both the synthesis and removal of this lipid may be regulated by phosphatases and possibly phospholipases

    PI(5)P regulates autophagosome biogenesis.

    Get PDF
    Phosphatidylinositol 3-phosphate (PI(3)P), the product of class III PI3K VPS34, recruits specific autophagic effectors, like WIPI2, during the initial steps of autophagosome biogenesis and thereby regulates canonical autophagy. However, mammalian cells can produce autophagosomes through enigmatic noncanonical VPS34-independent pathways. Here we show that PI(5)P can regulate autophagy via PI(3)P effectors and thereby identify a mechanistic explanation for forms of noncanonical autophagy. PI(5)P synthesis by the phosphatidylinositol 5-kinase PIKfyve was required for autophagosome biogenesis, and it increased levels of PI(5)P, stimulated autophagy, and reduced the levels of autophagic substrates. Inactivation of VPS34 impaired recruitment of WIPI2 and DFCP1 to autophagic precursors, reduced ATG5-ATG12 conjugation, and compromised autophagosome formation. However, these phenotypes were rescued by PI(5)P in VPS34-inactivated cells. These findings provide a mechanistic framework for alternative VPS34-independent autophagy-initiating pathways, like glucose starvation, and unravel a cytoplasmic function for PI(5)P, which previously has been linked predominantly to nuclear roles.We are grateful for funding from a Wellcome Trust Principal Research Fellowship (095317/Z/11/Z to D.C.R.), a Wellcome Trust Strategic Award (100140/Z/ 12/Z), the NIHR Biomedical Research Centre in Dementia at Addenbrooke’s Hospital, an MRC Confidence in Concepts grant (D.C.R.), and a FEBS Long- Term Fellowship (A.A.).This article was originally published in Molecular Cell (M Vicinanza, VI Korolchuk, A Ashkenazi, C Puri, FM Menzies, JH Clarke, DC Rubinsztein, Molecular Cell 2015, 57, 219-234

    The function of phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ) explored using a specific inhibitor that targets the PI5P-binding site.

    Get PDF
    NIH-12848 (NCGC00012848-02), a putative phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ) inhibitor, was explored as a tool for investigating this enigmatic, low activity, lipid kinase. PI5P4K assays in vitro showed that NIH-12848 inhibited PI5P4Kγ with an IC50 of approximately 1 μM but did not inhibit the α and β PI5P4K isoforms at concentrations up to 100 μM. A lack of inhibition of PI5P4Kγ ATPase activity suggested that NIH-12848 does not interact with the enzyme's ATP-binding site and direct exploration of binding using hydrogen-deuterium exchange (HDX)-MS (HDX-MS) revealed the putative PI5P-binding site of PI5P4Kγ to be the likely region of interaction. This was confirmed by a series of mutation experiments which led to the identification of a single PI5P4Kγ amino acid residue that can be mutated to its PI5P4Ks α and β homologue to render PI5P4Kγ resistant NIH-12848 inhibition. NIH-12848 (10 μM) was applied to cultured mouse principal kidney cortical collecting duct (mpkCCD) cells which, we show, express PI5P4Kγ that increases when the cells grow to confluence and polarize. NIH-12848 inhibited the translocation of Na⁺/K⁺-ATPase to the plasma membrane that occurs when mpkCCD cells grow to confluence and also prevented reversibly their forming of 'domes' on the culture dish. Both these NIH-12848-induced effects were mimicked by specific RNAi knockdown of PI5P4Kγ, but not that of PI5P4Ks α or β. Overall, the data reveal a probable contribution of PI5P4Kγ to the development and maintenance of epithelial cell functional polarity and show that NIH-12848 is a potentially powerful tool for exploring the cell physiology of PI5P4Ks.J.H.C was supported by the MRC (Grant RG64071), M-L.G. by the BBSRC (Grant RG65394), and J.H.B. by the BHF (Grant PG11/109/29247).This is the final version of the article. It first appeared from the Biochemical Society via http://dx.doi.org/10.1042/BJ2014133

    In B cells, phosphatidylinositol 5-phosphate 4-kinase-α synthesizes PI(4,5)P2 to impact mTORC2 and Akt signaling.

    Get PDF
    Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are enigmatic lipid kinases with physiological functions that are incompletely understood, not the least because genetic deletion and cell transfection have led to contradictory data. Here, we used the genetic tractability of DT40 cells to create cell lines in which endogenous PI5P4Kα was removed, either stably by genetic deletion or transiently (within 1 h) by tagging the endogenous protein genomically with the auxin degron. In both cases, removal impacted Akt phosphorylation, and by leaving one PI5P4Kα allele present but mutating it to be kinase-dead or have PI4P 5-kinase activity, we show that all of the effects on Akt phosphorylation were dependent on the ability of PI5P4Kα to synthesize phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] rather than to remove PI5P. Although stable removal of PI5P4Kα resulted in a pronounced decrease in Akt phosphorylation at Thr308 and Ser473, in part because of reduced plasma membrane PIP3, its acute removal led to an increase in Akt phosphorylation only at Ser473. This process invokes activation primarily of mammalian target of rapamycin complex 2 (mTORC2), which was confirmed by increased phosphorylation of other mTORC2 substrates. These findings establish PI5P4Kα as a kinase that synthesizes a physiologically relevant pool of PI(4,5)P2 and as a regulator of mTORC2, and show a phenomenon similar to the "butterfly effect" described for phosphatidylinositol 3-kinase Iα [Hart JR, et al. (2015) Proc Natl Acad Sci USA 112(4):1131-1136], whereby through apparently the same underlying mechanism, the removal of a protein's activity from a cell can have widely divergent effects depending on the time course of that removal.S.J.B. was supported by an A.J. Clark Studentship from the British Pharmacological Society, A.D. by Sidney Sussex College, the Cambridge Overseas Trust and the Säid Foundation, and J.H.C by the MRC (Grant RG64071).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Proceedings of the National Academy of Sciences (PNAS)

    Nuclear localizations of phosphatidylinositol 5-phosphate 4-kinases α and β are dynamic and independently regulated during starvation-induced stress.

    Get PDF
    The chicken B-cell line DT40 has two isoforms of phosphatidylinositol 5-phosphate 4-kinase (PI5P4K), α and β, which are likely to exist as a mixture of obligate homo- and hetero-dimers. Previous work has led us to speculate that an important role of the β isoform may be to target the more active PI5P4Kα isoform to the nucleus. In the present study we expand upon that work by genomically tagging the PI5P4Ks with fluorochromes in the presence or absence of stable or acute depletions of PI5P4Kβ. Consistent with our original hypothesis we find that PI5P4Kα is predominantly (possible entirely) cytoplasmic when PI5P4Kβ is stably deleted from cells. In contrast, when PI5P4Kβ is inducibly removed within 1 h PI5P4Kα retains its wild-type distribution of approximately 50:50 between cytoplasm and nucleus even through a number of cell divisions. This leads us to speculate that PI5P4Kα is chromatin-associated. We also find that when cells are in the exponential phase of growth PI5P4Kβ is primarily cytoplasmic but translocates to the nucleus upon growth into the stationary phase or upon serum starvation. Once again this is not accompanied by a change in PI5P4Kα localization and we show, using an in vitro model, that this is possible because the dimerization between the two isoforms is dynamic. Given this shift in PI5P4Kβ upon nutrient deprivation we explore the phenotype of PI5P4K B-null cells exposed to this stress and find that they can sustain a greater degree of nutrient deprivation than their wild-type counterparts possibly as a result of up-regulation of autophagy.A.D. was supported by Sidney Sussex College, the Cambridge Overseas Trusts and the Säid Foundation, S.J.B. by an A.J. Clarke Studentship of the British Pharmacological Society and J.H.C. by the MRC (Grant RG64071). We thank Ashok Venkitaraman and Gerard Evan for the kind gifts of reagents.This is the author accepted manuscript. The final version is available from Portland Press via http://dx.doi.org/10.1042/BCJ2016038

    Genomic tagging reveals a random association of endogenous PtdIns5P 4-kinases IIα and IIβ and a partial nuclear localization of the IIα isoform

    Get PDF
    PtdIns5P 4-kinases IIα and IIβ are cytosolic and nuclear respectively when transfected into cells, including DT40 cells [Richardson, Wang, Clarke, Patel and Irvine (2007) Cell. Signalling 19, 1309–1314]. In the present study we have genomically tagged both type II PtdIns5P 4-kinase isoforms in DT40 cells. Immunoprecipitation of either isoform from tagged cells, followed by MS, revealed that they are associated directly with each other, probably by heterodimerization. We quantified the cellular levels of the type II PtdIns5P 4-kinase mRNAs by real-time quantitative PCR and the absolute amount of each isoform in immunoprecipitates by MS using selective reaction monitoring with 14N,13C-labelled internal standard peptides. The results suggest that the dimerization is complete and random, governed solely by the relative concentrations of the two isoforms. Whereas PtdIns5P 4-kinase IIβ is >95% nuclear, as expected, the distribution of PtdIns4P 4-kinase IIα is 60% cytoplasmic (all bound to membranes) and 40% nuclear. In vitro, PtdIns5P 4-kinase IIα was 2000-fold more active as a PtdIns5P 4-kinase than the IIβ isoform. Overall the results suggest a function of PtdIns5P 4-kinase IIβ may be to target the more active IIα isoform into the nucleus
    corecore