8,122 research outputs found

    Shock reflection and surface effects in the shock tube

    Get PDF
    A thin-film resistance thermometer, mounted on the end-wall of a shock tube, is used to record surface temperatures and heat transfer rates following reflection of the primary shock wave. This information is combined with the results of theoretical investigations to produce simultaneous information about surface accommodation effects and gas thermal conductivities at high pressures and moderate temperatures

    Localization of Metal-Induced Gap States at the Metal-Insulator Interface:Origin of Flux Noise in SQUIDs and Superconducting Qubits

    Full text link
    The origin of magnetic flux noise in Superconducting Quantum Interference Devices with a power spectrum scaling as 1/f1/f (ff is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of 5×10175\times10^{17}m2^{-2}. We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density

    Identification of a New Family of Enzymes with Potential \u3cem\u3eO\u3c/em\u3e-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria

    Get PDF
    Background: The metabolism of the rigid bacterial cell wall heteropolymer peptidoglycan is a dynamic process requiring continuous biosynthesis and maintenance involving the coordination of both lytic and synthetic enzymes. The O-acetylation of peptidoglycan has been proposed to provide one level of control on these activities as this modification inhibits the action of the major endogenous lytic enzymes, the lytic transglycosylases. The O-acetylation of peptidoglycan also inhibits the activity of the lysozymes which serve as the first line of defense of host cells against the invasion of bacterial pathogens. Despite this central importance, there is a dearth of information regarding peptidoglycan O-acetylation and nothing has previously been reported on its de-acetylation. Results: Homology searches of the genome databases have permitted this first report on the identification of a potential family of O-Acetylpeptidoglycan esterases (Ape). These proteins encoded in the genomes of a variety of both Gram-negative and Gram-positive bacteria, including a number of important human pathogens such as species of Neisseria, Helicobacter, Campylobacter, and Bacillus anthracis, have been organized into three families based on amino acid sequence similarities with family 1 being further divided into three sub-families. The genes encoding these proteins are shown to be clustered with Peptidoglycan O-acetyltransferases (Pat) and in some cases, together with other genes involved in cell wall metabolism. Representative bacteria that encode the Ape proteins were experimentally shown to produce O-acetylated peptidoglycan. Conclusion: The hypothetical proteins encoded by the pat and ape genes have been organized into families based on sequence similarities. The Pat proteins have sequence similarity to Pseudomonas aeruginosa AlgI, an integral membrane protein known to participate in the O-acetylation of the exopolysaccaride, alginate. As none of the bacteria that harbor the pat genes produce alginate, we propose that the Pat proteins serve to O-acetylate peptidoglycan which is known to be a maturation event occurring in the periplasm. The Ape sequences have amino acid sequence similarity to the CAZy CE 3 carbohydrate esterases, a family previously known to be composed of only O-acetylxylan esterases. They are predicted to contain the α/β hydrolase fold associated with the GDSL and TesA hydrolases and they possess the signature motifs associated with the catalytic residues of the CE3 esterases. Specific signature sequence motifs were identified for the Ape proteins which led to their organization into distinct families. We propose that by expressing both Pat and Ape enzymes, bacteria would be able to obtain a high level of localized control over the degradation of peptidoglycan through the attachment and removal of O-linked acetate. This would facilitate the efficient insertion of pores and flagella, localize spore formation, and control the level of general peptidoglycan turnover

    Binary Capture Rates for Massive Protostars

    Full text link
    The high multiplicity of massive stars in dense, young clusters is established early in their evolution. The mechanism behind this remains unresolved. Recent results suggest that massive protostars may capture companions through disk interactions with much higher efficiency than their solar mass counterparts. However, this conclusion is based on analytic determinations of capture rates and estimates of the robustness of the resulting binaries. We present the results of coupled n-body and SPH simulations of star-disk encounters to further test the idea that disk-captured binaries contribute to the observed multiplicity of massive stars.Comment: 4 pages, 3 figures, accepted to ApJ

    The glia response after peripheral nerve injury: A comparison between Schwann cells and olfactory ensheathing cells and their uses for neural regenerative therapies

    Get PDF
    The peripheral nervous system (PNS) exhibits a much larger capacity for regeneration than the central nervous system (CNS). One reason for this difference is the difference in glial cell types between the two systems. PNS glia respond rapidly to nerve injury by clearing debris from the injury site, supplying essential growth factors and providing structural support; all of which enhances neuronal regeneration. Thus, transplantation of glial cells from the PNS is a very promising therapy for injuries to both the PNS and the CNS. There are two key types of PNS glia: olfactory ensheathing cells (OECs), which populate the olfactory nerve, and Schwann cells (SCs), which are present in the rest of the PNS. These two glial types share many similar morphological and functional characteristics but also exhibit key differences. The olfactory nerve is constantly turning over throughout life, which means OECs are continuously stimulating neural regeneration, whilst SCs only promote regeneration after direct injury to the PNS. This review presents a comparison between these two PNS systems in respect to normal physiology, developmental anatomy, glial functions and their responses to injury. A thorough understanding of the mechanisms and differences between the two systems is crucial for the development of future therapies using transplantation of peripheral glia to treat neural injuries and/or disease.Griffith Health, School of Nursing and MidwiferyFull Tex

    Mortgage Banks: A Study in Real Estate Finance

    Get PDF

    Which Triggers Produce the Most Erosive, Frequent, and Longest Runout Turbidity Currents on Deltas?

    Get PDF
    Subaerial rivers and turbidity currents are the two most voluminous sediment transport processes on our planet, and it is important to understand how they are linked offshore from river mouths. Previously, it was thought that slope failures or direct plunging of river floodwater (hyperpycnal flow) dominated the triggering of turbidity currents on delta fronts. Here we reanalyze the most detailed time‐lapse monitoring yet of a submerged delta; comprising 93 surveys of the Squamish Delta in British Columbia, Canada. We show that most turbidity currents are triggered by settling of sediment from dilute surface river plumes, rather than landslides or hyperpycnal flows. Turbidity currents triggered by settling plumes occur frequently, run out as far as landslide‐triggered events, and cause the greatest changes to delta and lobe morphology. For the first time, we show that settling from surface plumes can dominate the triggering of hazardous submarine flows and offshore sediment fluxes

    MgB2 tunnel junctions and 19 K low-noise dc superconducting quantum interference devices

    Get PDF
    Point contact junctions made from two pieces of MgB2 can be adjusted to exhibit either superconductor-insulator-superconductor (SIS) or superconductor-normal metal-superconductor (SNS) current-voltage characteristics. The SIS characteristics are in good agreement with the standard tunneling model for s-wave superconductors, and yield an energy gap of (2.02 +/- 0.08) meV. The SNS characteristics are in good agreement with the predictions of the resistively-shunted junction model. DC Superconducting QUantum Interference Devices made from two SNS junctions yield magnetic field noise as low as 35 fT/Hz^{1/2} at 19 K.Comment: 4 pages, 4 figure

    Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta

    Get PDF
    Rivers and turbidity currents are the two most important sediment transport processes by volume on Earth. Various hypotheses have been proposed for triggering of turbidity currents offshore from river mouths, including direct plunging of river discharge, delta mouth bar flushing or slope failure caused by low tides and gas expansion, earthquakes and rapid sedimentation. During 2011, 106 turbidity currents were monitored at Squamish Delta, British Columbia. This enables statistical analysis of timing, frequency and triggers. The largest peaks in river discharge did not create hyperpycnal flows. Instead, delayed delta-lip failures occurred 8–11 h after flood peaks, due to cumulative delta top sedimentation and tidally-induced pore pressure changes. Elevated river discharge is thus a significant control on the timing and rate of turbidity currents but not directly due to plunging river water. Elevated river discharge and focusing of river discharge at low tides cause increased sediment transport across the delta-lip, which is the most significant of all controls on flow timing in this setting
    corecore