4,878 research outputs found
Non-invasive computer-assisted measurement of knee alignment
The quantification of knee alignment is a routine part of orthopaedic practice and is important for monitoring disease progression, planning interventional strategies, and follow-up of patients. Currently available technologies such as radiographic measurements have a number of drawbacks. The aim of this study was to validate a potentially improved technique for measuring knee alignment under different conditions. An image-free navigation system was adapted for non-invasive use through the development of external infrared tracker mountings. Stability was assessed by comparing the variance (F-test) of repeated mechanical femoro-tibial (MFT) angle measurements for a volunteer and a leg model. MFT angles were then measured supine, standing and with varus-valgus stress in asymptomatic volunteers who each underwent two separate registrations and repeated measurements for each condition. The mean difference and 95% limits of agreement were used to assess intra-registration and inter-registration repeatability. For multiple registrations the range of measurements for the external mountings was 1° larger than for the rigid model with statistically similar variance (p=0.34). Thirty volunteers were assessed (19 males, 11 females) with a mean age of 41 years (range: 20-65) and a mean BMI of 26 (range: 19-34). For intra-registration repeatability, consecutive coronal alignment readings agreed to almost ±1°, with up to ±0.5° loss of repeatability for coronal alignment measured before and after stress maneuvers, and a ±0.2° loss following stance trials. Sagittal alignment measurements were less repeatable overall by an approximate factor of two. Inter-registration agreement limits for coronal and sagittal supine MFT angles were ±1.6° and ±2.3°, respectively. Varus and valgus stress measurements agreed to within ±1.3° and ±1.1°, respectively. Agreement limits for standing MFT angles were ±2.9° (coronal) and ±5.0° (sagittal), which may have reflected a variation in stance between measurements. The system provided repeatable, real-time measurements of coronal and sagittal knee alignment under a number of dynamic, real-time conditions, offering a potential alternative to radiographs
Recommended from our members
Impacts of aerosols and clouds on photolysis frequencies and photochemistry during TRACE-P: 2. Three-dimensional study using a regional chemical transport model
Recommended from our members
Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment
Demographic profile and epidemiology of injury in Mthatha, South Africa
Objective: To determine the magnitude, socio-demographic and epidemiological characteristics of injury at a Provincial referral hospital.Methods: This review was conducted on all trauma patients admitted at the Mthatha Hospital Complex and Nelson Mandela Academic Hospital from the 1st January 1997 to the 31st December 2000.Results: The incident rate of injuries was 3.2% (n=2460/75,833 total admissions). Injured patients were mostly black (80%) and males (ratio: 5 men: 1 woman). Only 8.1% of injured patients were transported to hospital by ambulances. The leading causes of injuries were inter-personal violence accounting for 60% of cases, and motor vehicle accidents accounting for 19%; of them 38% were due to poor visibility, over speeding, and fatigue. The overall mortality was 33% (n=821) independently predicted by poverty (OR=8.2 95%CI 6-11.1; P40 years(OR=7.8 95%CI 7.7-12.1;P<0.0001).Conclusion: The burden of injury is a mass issue that warrants regional attention with quality of care and training.Keywords: Injuries, violence, poverty, mortality, South AfricaAfrican Health Sciences 2013; 13(4): 1144 - 114
Systematic Investigation of the Permeability of Androgen Receptor PROTACs
Bifunctional molecules known as PROTACs simultaneously bind an E3 ligase and a protein of interest to direct ubiquitination and clearance of that protein, and they have emerged in the past decade as an exciting new paradigm in drug discovery. In order to investigate the permeability and properties of these large molecules, we synthesized two panels of PROTAC molecules, constructed from a range of protein-target ligands, linkers, and E3 ligase ligands. The androgen receptor, which is a well-studied protein in the PROTAC field was used as a model system. The physicochemical properties and permeability of PROTACs are discussed
Climate Change and invasibility of the Antarctic benthos
Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica
Should We Learn Probabilistic Models for Model Checking? A New Approach and An Empirical Study
Many automated system analysis techniques (e.g., model checking, model-based
testing) rely on first obtaining a model of the system under analysis. System
modeling is often done manually, which is often considered as a hindrance to
adopt model-based system analysis and development techniques. To overcome this
problem, researchers have proposed to automatically "learn" models based on
sample system executions and shown that the learned models can be useful
sometimes. There are however many questions to be answered. For instance, how
much shall we generalize from the observed samples and how fast would learning
converge? Or, would the analysis result based on the learned model be more
accurate than the estimation we could have obtained by sampling many system
executions within the same amount of time? In this work, we investigate
existing algorithms for learning probabilistic models for model checking,
propose an evolution-based approach for better controlling the degree of
generalization and conduct an empirical study in order to answer the questions.
One of our findings is that the effectiveness of learning may sometimes be
limited.Comment: 15 pages, plus 2 reference pages, accepted by FASE 2017 in ETAP
Evaluating regional emission estimates using the TRACE-P observations
Measurements obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment are used in conjunction with regional modeling analysis to evaluate emission estimates for Asia. A comparison between the modeled values and the observations is one method to evaluate emissions. Based on such analysis it is concluded that the inventory performs well for the light alkanes, CO, ethyne, SO2, and NOₓ. Furthermore, based on model skill in predicting important photochemical species such as O₃, HCHO, OH, HO₂, and HNO₃, it is found that the emissions inventories are of sufficient quality to support preliminary studies of ozone production. These are important finding in light of the fact that emission estimates for many species (such as speciated NMHCs and BC) for this region have only recently been estimated and are highly uncertain. Using a classification of the measurements built upon trajectory analysis, we compare observed species distributions and ratios of species to those modeled and to ratios estimated from the emissions inventory. It is shown that this technique can reconstruct a spatial distribution of propane/benzene that looks remarkably similar to that calculated from the emissions inventory. A major discrepancy between modeled and observed behavior is found in the Yellow Sea, where modeled values are systematically underpredicted. The integrated analysis suggests that this may be related to an underestimation of emissions from the domestic sector. The emission is further tested by comparing observed and measured species ratios in identified megacity plumes. Many of the model derived ratios (e.g., BC/CO, SOₓ/C₂H₂) fall within ∼25% of those observed and all fall outside of a factor of 2.5. (See Article file for details of the abstract.)Department of Civil and Environmental EngineeringAuthor name used in this publication: Wang, T
The influence of methylphenidate on the power spectrum of ADHD children – an MEG study
BACKGROUND: The present study was dedicated to investigate the influence of Methylphenidate (MPH) on cortical processing of children who were diagnosed with different subtypes of Attention Deficit Hyperactivity Disorder (ADHD). As all of the previous studies investigating power differences in different frequency bands have been using EEG, mostly with a relatively small number of electrodes our aim was to obtain new aspects using high density magnetoencephalography (MEG). METHODS: 35 children (6 female, 29 male) participated in this study. Mean age was 11.7 years (± 1.92 years). 17 children were diagnosed of having an Attention-Deficit/Hyperactivity Disorder of the combined type (ADHDcom, DSM IV code 314.01); the other 18 were diagnosed for ADHD of the predominantly inattentive type (ADHDin, DSM IV code 314.0). We measured the MEG during a 5 minute resting period with a 148-channel magnetometer system (MAGNES™ 2500 WH, 4D Neuroimaging, San Diego, USA). Power values were averaged for 5 bands: Delta (D, 1.5–3.5 Hz), Theta (T, 3.5–7.5 Hz), Alpha (A, 7.5–12.5 Hz), Beta (B, 12.5–25 Hz) and Global (GL, 1.5–25 Hz).). Additionally, attention was measured behaviourally using the D2 test of attention with and without medication. RESULTS: The global power of the frequency band from 1.5 to 25 Hz increased with MPH. Relative Theta was found to be higher in the left hemisphere after administration of MPH than before. A positive correlation was found between D2 test improvement and MPH-induced power changes in the Theta band over the left frontal region. A linear regression was computed and confirmed that the larger the improvement in D2 test performance, the larger the increase in Theta after MPH application. CONCLUSION: Main effects induced by medication were found in frontal regions. Theta band activity increased over the left hemisphere after MPH application. This finding contradicts EEG results of several groups who found lower levels of Theta power after MPH application. As relative Theta correlates with D2 test improvement we conclude that MEG provide complementary and therefore important new insights to ADHD
- …