299 research outputs found
Molecular mechanisms of metastasis in prostate cancer
Prostate cancer (PCa) preferentially metastasizes to the bone marrow stroma of the axial skeleton. This activity is the principal cause of PCa morbidity and mortality. The exact mechanism of PCa metastasis is currently unknown, although considerable progress has been made in determining the key players in this process. In this review, we present the current understanding of the molecular processes driving PCa metastasis to the bone
Discrimination of prostate cancer cells and non-malignant cells using secondary ion mass spectrometry
This communication utilises Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) combined with multivariate analysis to obtain spectra from the surfaces of three closely related cell lines allowing their discrimination based upon mass spectral ions
Copper modulates zinc metalloproteinase-dependent ectodomain shedding of key signaling and adhesion proteins and promotes the invasion of prostate cancer epithelial cells
A disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) are zinc metalloproteinases (ZMPs) that catalyse the 'ectodomain shedding' of a range of cell surface proteins including signalling and adhesion molecules. These 'sheddases' are associated with the invasion and metastasis of a range of cancers. Increased serum and tumour tissue levels of copper are also observed in several cancers although little is known about how the metal might promote disease progression at the molecular level. In the current study, we investigated whether copper might regulate the ectodomain shedding of two key cell surface proteins implicated in the invasion and metastasis of prostate cancer, the Notch ligand Jagged1 and the adhesion molecule E-cadherin, and whether the metal was able to influence the invasion of the prostate cancer epithelial cell line PC3. Physiological copper concentrations stimulated the ZMP-mediated proteolysis of Jagged1 and E-cadherin in cell culture models whilst other divalent metals had no effect. Copper-mediated Jagged1 proteolysis was also observed following the pre-treatment of cells with cycloheximide and in a cell-free membrane system, indicating a post-translational mechanism of sheddase activation. Finally, the concentrations of copper that stimulated ZMP-mediated protein shedding also enhanced PC3 invasion; an effect which could be negated using a sheddase inhibitor or copper chelators. Collectively, these data implicate copper as an important factor in promoting prostate cancer cell invasion and indicate that the selective post-translational activation of ZMP-mediated protein shedding might play a role in this process.
- …