109 research outputs found

    Social Intelligence and Academic Achievement as Predictors of Adolescent Popularity

    Get PDF
    This study compared the effects of social intelligence and cognitive intelligence, as measured by academic achievement, on adolescent popularity in two school contexts. A distinction was made between sociometric popularity, a measure of acceptance, and perceived popularity, a measure of social dominance. Participants were 512, 14–15 year-old adolescents (56% girls, 44% boys) in vocational and college preparatory schools in Northwestern Europe. Perceived popularity was significantly related to social intelligence, but not to academic achievement, in both contexts. Sociometric popularity was predicted by an interaction between academic achievement and social intelligence, further qualified by school context. Whereas college bound students gained sociometric popularity by excelling both socially and academically, vocational students benefited from doing well either socially or academically, but not in combination. The implications of these findings were discussed

    A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.Comment: revtex4 18 pp., 12 figure

    First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction

    Full text link
    The first measurements of the transferred polarization for the exclusive ep --> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron beam was used to measure the hyperon polarization over a range of Q2 from 0.3 to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass angular range of the K+ meson. Comparison with predictions of hadrodynamic models indicates strong sensitivity to the underlying resonance contributions. A non-relativistic quark model interpretation of our data suggests that the s-sbar quark pair is produced with spins predominantly anti-aligned. Implications for the validity of the widely used 3P0 quark-pair creation operator are discussed.Comment: 6 pages, 4 figure

    Mass estimates from optical modelling of the new TRAPUM redback PSR J1910-5320

    Get PDF
    Spider pulsars continue to provide promising candidates for neutron star mass measurements. Here we present the discovery of PSR~J1910-5320, a new millisecond pulsar discovered in a MeerKAT observation of an unidentified \textit{Fermi}-LAT gamma-ray source. This pulsar is coincident with a recently identified candidate redback binary, independently discovered through its periodic optical flux and radial velocity. New multi-color optical light curves obtained with ULTRACAM/NTT in combination with MeerKAT timing and updated SOAR/Goodman spectroscopic radial velocity measurements allow a mass constraint for PSR~J1910-5320. \texttt{Icarus} optical light curve modelling, with streamlined radial velocity fitting, constrains the orbital inclination and companion velocity, unlocking the binary mass function given the precise radio ephemeris. Our modelling aims to unite the photometric and spectroscopic measurements available by fitting each simultaneously to the same underlying physical model, ensuring self-consistency. This targets centre-of-light radial velocity corrections necessitated by the irradiation endemic to spider systems. Depending on the gravity darkening prescription used, we find a moderate neutron star mass of either 1.6±0.21.6\pm0.2 or 1.4±0.21.4\pm0.2 MM_\odot. The companion mass of either 0.45±0.040.45\pm0.04 or 0.430.03+0.040.43^{+0.04}_{-0.03} MM_\odot also further confirms PSR~J1910-5320 as an irradiated redback spider pulsar.radiated redback spider pulsar

    Self-Reported Time in Bed and Sleep Quality in Association with Internalizing and Externalizing Symptoms in School-Age Youth

    Get PDF
    This study investigated the relationship between self-reported time in bed and sleep quality in association with self-reported internalizing and externalizing symptoms in a sample of 285 elementary school students (52% female) recruited from a rural Midwestern elementary school. Path models were used to estimate proposed associations, controlling for grade level and gender. Curvilinear associations were found between time in bed and anxiety, depressive symptoms, and irritability. Marginal curvilinear trends were found between time in bed and emotion dysregulation, reactive aggression, and proactive aggression. Sleep quality was negatively associated with anxiety, depressive symptoms, irritability, reactive aggression, and delinquency engagement. Gender and grade differences were found across models. Findings suggest that examining self-reported time in bed (both linear and quadratic) and sleep quality is important for understanding internalizing and externalizing symptoms associated with sleep in school-age youth. Incorporating self-reported sleep assessments into clinical practice and school-based evaluations may have implications for a child’s adjustment

    Measurement of the Q2 dependence of the deuteron spin structure function g1 and its moments at low Q2 with CLAS

    Get PDF
    We measured the g 1 spin structure function of the deuteron at low Q 2 , where QCD can be approximated with chiral perturbation theory ( χ PT ). The data cover the resonance region, up to an invariant mass of W ≈ 1.9     GeV . The generalized Gerasimov-Drell-Hearn sum, the moment Γ d 1 and the spin polarizability γ d 0 are precisely determined down to a minimum Q 2 of 0.02     GeV 2 for the first time, about 2.5 times lower than that of previous data. We compare them to several χ PT calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the χ PT domain

    Gene Expression Profiles of Beta-Cell Enriched Tissue Obtained by Laser Capture Microdissection from Subjects with Type 2 Diabetes

    Get PDF
    Background: Changes in gene expression in pancreatic beta-cells from type 2 diabetes (T2D) should provide insights into their abnormal insulin secretion and turnover. Methodology/Principal Findings: Frozen sections were obtained from cadaver pancreases of 10 control and 10 T2D human subjects. Beta-cell enriched samples were obtained by laser capture microdissection (LCM). RNA was extracted, amplified and subjected to microarray analysis. Further analysis was performed with DNA-Chip Analyzer (dChip) and Gene Set Enrichment Analysis (GSEA) software. There were changes in expression of genes linked to glucotoxicity. Evidence of oxidative stress was provided by upregulation of several metallothionein genes. There were few changes in the major genes associated with cell cycle, apoptosis or endoplasmic reticulum stress. There was differential expression of genes associated with pancreatic regeneration, most notably upregulation of members of the regenerating islet gene (REG) family and metalloproteinase 7 (MMP7). Some of the genes found in GWAS studies to be related to T2D were also found to be differentially expressed. IGF2BP2, TSPAN8, and HNF1B (TCF2) were upregulated while JAZF1 and SLC30A8 were downregulated. Conclusions/Significance: This study made possible by LCM has identified many novel changes in gene expression tha

    Probing high-momentum protons and neutrons in neutron-rich nuclei

    Get PDF
    The atomic nucleus is one of the densest and most complex quantum-mechanical systems in nature. Nuclei account for nearly all the mass of the visible Universe. The properties of individual nucleons (protons and neutrons) in nuclei can be probed by scattering a high-energy particle from the nucleus and detecting this particle after it scatters, often also detecting an additional knocked-out proton. Analysis of electron- and proton-scattering experiments suggests that some nucleons in nuclei form close-proximity neutron-proton pairs1-12 with high nucleon momentum, greater than the nuclear Fermi momentum. However, how excess neutrons in neutron-rich nuclei form such close-proximity pairs remains unclear. Here we measure protons and, for the first time, neutrons knocked out of medium-to-heavy nuclei by high-energy electrons and show that the fraction of high-momentum protons increases markedly with the neutron excess in the nucleus, whereas the fraction of high-momentum neutrons decreases slightly. This effect is surprising because in the classical nuclear shell model, protons and neutrons obey Fermi statistics, have little correlation and mostly fill independent energy shells. These high-momentum nucleons in neutron-rich nuclei are important for understanding nuclear parton distribution functions (the partial momentum distribution of the constituents of the nucleon) and changes in the quark distributions of nucleons bound in nuclei (the EMC effect)1,13,14. They are also relevant for the interpretation of neutrino-oscillation measurements15 and understanding of neutron-rich systems such as neutron stars3,16
    corecore