54,679 research outputs found
Effect of area ratio on the performance of a 5.5:1 pressure ratio centrifugal impeller
A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/sec was tested with a vaneless diffuser for a range of design point impeller area ratios from 2.322 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.97 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower value of area ratio of approximately 2.55. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested
Energy-dependent evolution in IC10 X-1: hard evidence for an extended corona and implications
We have analyzed a ~130 ks XMM-Newton observation of the dynamically confirmed black hole + Wolf-Rayet (BH+WR) X-ray binary (XB) IC10 X-1, covering ~1 orbital cycle. This system experiences periodic intensity dips every ~35 hr. We find that energy-independent evolution is rejected at a >5σ level. The spectral and timing evolution of IC10 X-1 are best explained by a compact disk blackbody and an extended Comptonized component, where the thermal component is completely absorbed and the Comptonized component is partially covered during the dip. We consider three possibilities for the absorber: cold material in the outer accretion disk, as is well documented for Galactic neutron star (NS) XBs at high inclination; a stream of stellar wind that is enhanced by traveling through the L1 point; and a spherical wind. We estimated the corona radius (r ADC) for IC10 X-1 from the dip ingress to be ~106 km, assuming absorption from the outer disk, and found it to be consistent with the relation between r ADC and 1-30 keV luminosity observed in Galactic NS XBs that spans two orders of magnitude. For the other two scenarios, the corona would be larger. Prior BH mass (M BH) estimates range over 23-38 M ☉, depending on the inclination and WR mass. For disk absorption, the inclination, i, is likely to be ~60-80°, with M BH ~ 24-41 M ☉. Alternatively, the L1-enhanced wind requires i ~ 80°, suggesting ~24-33 M ☉. For a spherical absorber, i ~ 40°, and M BH ~ 50-65 M ☉
Inventory of wetlands and agricultural land cover in the upper Sevier River Basin, Utah
The use of color infrared aerial photography in the mapping of agricultural land use and wetlands in the Sevier River Basin of south central utah is described. The efficiency and cost effectiveness of utilizing LANDSAT multispectral scanner digital data to augment photographic interpretations are discussed. Transparent overlays for 27 quadrangles showing delineations of wetlands and agricultural land cover were produced. A table summarizing the acreage represented by each class on each quadrangle overlay is provided
Microsecond resolution of quasiparticle tunneling in the single-Cooper-pair-transistor
We present radio-frequency measurements on a single-Cooper-pair-transistor in
which individual quasiparticle poisoning events were observed with microsecond
temporal resolution. Thermal activation of the quasiparticle dynamics is
investigated, and consequently, we are able to determine energetics of the
poisoning and un-poisoning processes. In particular, we are able to assign an
effective quasiparticle temperature to parameterize the poisoning rate.Comment: 4 pages, 4 fig
Irrigated acreage in the Bear River Basin as of the 1975 growing season
The irrigated cropland in the Bear River Basin as of the 1975 growing season was inventoried from satellite imagery. LANDSAT color infrared images (scale 1:125,000) were examined for early, mid, and late summer dates, and acreage was estimated by use of township/section overlays. The total basin acreage was estimated to be 573,435 acres, with individual state totals as follows: Idaho 234,370 acres; Utah 265,505 acres; and Wyoming 73,560 acres. As anticipated, wetland areas intermingled among cropland appears to have produced an over-estimation of irrigated acreage. According to a 2% random sample of test sites evaluated by personnel from the Soil Conservation Service such basin-wide over-estimation is 7.5%; individual counties deviate significantly from the basin-wide figure, depending on the relative amount of wetland areas intermingled with cropland
Adaptive multigrid algorithm for the lattice Wilson-Dirac operator
We present an adaptive multigrid solver for application to the non-Hermitian
Wilson-Dirac system of QCD. The key components leading to the success of our
proposed algorithm are the use of an adaptive projection onto coarse grids that
preserves the near null space of the system matrix together with a simplified
form of the correction based on the so-called gamma_5-Hermitian symmetry of the
Dirac operator. We demonstrate that the algorithm nearly eliminates critical
slowing down in the chiral limit and that it has weak dependence on the lattice
volume
Giant Relaxation Oscillations in a Very Strongly Hysteretic SQUID ring-Tank Circuit System
In this paper we show that the radio frequency (rf) dynamical characteristics
of a very strongly hysteretic SQUID ring, coupled to an rf tank circuit
resonator, display relaxation oscillations. We demonstrate that the the overall
form of these characteristics, together with the relaxation oscillations, can
be modelled accurately by solving the quasi-classical non-linear equations of
motion for the system. We suggest that in these very strongly hysteretic
regimes SQUID ring-resonator systems may find application in novel logic and
memory devices.Comment: 7 pages, 5 figures. Uploaded as implementing a policy of arXiving old
paper
- …