1,207 research outputs found

    Structural Transitions in a Classical Two-Dimensional Molecule System

    Full text link
    The ground state of a classical two-dimensional (2D) system with finite number of charged particles, trapped by two positive impurities charges localized at a distance (zo) from the 2D plane and separated from each other by a distance xp are obtained. The impurities are allowed to carry more than one positive charge. This classical system can form a 2D-like classical molecule that exhibits structural transitions and spontaneous symmetry breaking as a function of the separation between the positive charges before it transforms into two independent 2D-like classical atoms. We also observe structural transitions as a function of the dielectric constant of the substrate which supports the charged particles, in addition to broken symmetry states and unbinding of particles.Comment: 9 pages, 7 figure

    Electromagnetic absorption of a pinned Wigner crystal at finite temperatures

    Full text link
    We investigate the microwave absorption of a pinned, two-dimensional Wigner crystal in a strong magnetic field at finite temperatures. Using a model of a uniform commensurate pinning potential, we analyze thermal broadening of the electromagnetic absorption resonance. Surprisingly, we find that the pinning resonance peak should remain sharp even when the temperature is comparable or greater than the peak frequency. This result agrees qualitatively with recent experimental observations of the ac conductivity in two-dimensional hole systems in a magnetically induced insulating state. It is shown, in analogy with Kohn's theorem, that the electron-electron interaction does not affect the response of a harmonically pinned Wigner crystal to a spatially uniform external field at any temperature. We thus focus on anharmonicity in the pinning potential as a source of broadening. Using a 1/N expansion technique, we show that the broadening is introduced through the self-energy corrections to the magnetophonon Green's functions.Comment: 21 pages, 9 eps figure

    Consistent histories, the quantum Zeno effect, and time of arrival

    Get PDF
    We present a decomposition of the general quantum mechanical evolution operator, that corresponds to the path decomposition expansion, and interpret its constituents in terms of the quantum Zeno effect (QZE). This decomposition is applied to a finite dimensional example and to the case of a free particle in the real line, where the possibility of boundary conditions more general than those hitherto considered in the literature is shown. We reinterpret the assignment of consistent probabilities to different regions of spacetime in terms of the QZE. The comparison of the approach of consistent histories to the problem of time of arrival with the solution provided by the probability distribution of Kijowski shows the strength of the latter point of view

    Electron-Electron Interactions and the Hall-Insulator

    Full text link
    Using the Kubo formula, we show explicitly that a non-interacting electron system can not behave like a Hall-insulator, {\it ie.,} a DC resistivity matrix ρxx\rho_{xx}\rightarrow\infty and ρxy=\rho_{xy}=finite in the zero temperature limit, as has been observed recently in experiment. For a strongly interacting electron system in a magnetic field, we illustrate, by constructing a specific form of correlations between mobile and localized electrons, that the Hall resistivity can approximately equal to its classical value. A Hall-insulator is realized in this model when the density of mobile electrons becomes vanishingly small. It is shown that in non-interacting electron systems, the zero-temperature frequency-dependent conductacnce generally does not give the DC conductance.Comment: 11 pages, RevTeX3.

    Cooperation and Self-Regulation in a Model of Agents Playing Different Games

    Full text link
    A simple model for cooperation between "selfish" agents, which play an extended version of the Prisoner's Dilemma(PD) game, in which they use arbitrary payoffs, is presented and studied. A continuous variable, representing the probability of cooperation, pk(t)p_k(t) \in [0,1], is assigned to each agent kk at time tt. At each time step tt a pair of agents, chosen at random, interact by playing the game. The players update their pk(t)p_k(t) using a criteria based on the comparison of their utilities with the simplest estimate for expected income. The agents have no memory and use strategies not based on direct reciprocity nor 'tags'. Depending on the payoff matrix, the systems self-organizes - after a transient - into stationary states characterized by their average probability of cooperation pˉeq\bar{p}_{eq} and average equilibrium per-capita-income pˉeq,Uˉ\bar{p}_{eq},\bar{U}_\infty. It turns out that the model exhibit some results that contradict the intuition. In particular, some games which - {\it a priory}- seems to favor defection most, may produce a relatively high degree of cooperation. Conversely, other games, which one would bet that lead to maximum cooperation, indeed are not the optimal for producing cooperation.Comment: 11 pages, 3 figures, keybords: Complex adaptive systems, Agent-based models, Social system

    Observation of Parity Violation in the Omega-minus -> Lambda + K-minus Decay

    Get PDF
    The alpha decay parameter in the process Omega-minus -> Lambda + K-minus has been measured from a sample of 4.50 million unpolarized Omega-minus decays recorded by the HyperCP (E871) experiment at Fermilab and found to be [1.78 +/- 0.19(stat) +/- 0.16(syst)]{\times}10^{-2}. This is the first unambiguous evidence for a nonzero alpha decay parameter, and hence parity violation, in the Omega-minus -> Lambda + K-minus decay.Comment: 10 pages, 7 figure

    Skyrmion Excitations in Quantum Hall Systems

    Full text link
    Using finite size calculations on the surface of a sphere we study the topological (skyrmion) excitation in quantum Hall system with spin degree of freedom at filling factors around ν=1\nu=1. In the absence of Zeeman energy, we find, in systems with one quasi-particle or one quasi-hole, the lowest energy band consists of states with L=SL=S, where LL and SS are the total orbital and spin angular momentum. These different spin states are almost degenerate in the thermodynamic limit and their symmetry-breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electron interaction and the skyrmion shrinks to a spin texture of finite size. We have calculated the energy gap of the system at infinite wave vector limit as a function of the Zeeman energy and find there are kinks in the energy gap associated with the shrinking of the size of the skyrmion. breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electronComment: 4 pages, 5 postscript figures available upon reques

    Influence of large local and non-local bispectra on primordial black hole abundance

    Get PDF
    Primordial black holes represent a unique probe to constrain the early universe on small scales - providing the only constraints on the primordial power spectrum on the majority of scales. However, these constraints are strongly dependent on even small amounts of non-Gaussianity, which is unconstrained on scales significantly smaller than those visible in the CMB. This paper goes beyond previous considerations to consider the effects of a bispectrum of the equilateral, orthogonal and local shapes with arbitrary magnitude upon the abundance of primordial black holes. Non-Gaussian density maps of the early universe are generated from a given bispectrum and used to place constraints on the small scale power spectrum. When small, we show that the skewness provides an accurate estimate for how the constraint depends on non-Gaussianity, independently of the shape of the bispectrum. We show that the orthogonal template of non-Gaussianity has an order of magnitude weaker effect on the constraints than the local and equilateral templates.Comment: 11 pages, 4 figures, updated to match published version in JCAP02(2016)029, Journal of Cosmology and Astroparticle Physics, Volume 2016, February 201

    HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays

    Full text link
    The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ\Xi and Λ\Lambda hyperon decays with a sensitivity of 10410^{-4}. Intense charged secondary beams were produced by 800 GeV/c protons and momentum-selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in twelve months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.
    corecore