57,213 research outputs found

    Using CO line ratios to trace the physical properties of molecular clouds

    Get PDF
    The carbon monoxide (CO) rotational transition lines are the most common tracers of molecular gas within giant molecular clouds (MCs). We study the ratio (R21/10R_{2-1/1-0}) between CO's first two emission lines and examine what information it provides about the physical properties of the cloud. To study R21/10R_{2-1/1-0} we perform smooth particle hydrodynamic simulations with time dependent chemistry (using GADGET-2), along with post-process radiative transfer calculations on an adaptive grid (using RADMC-3D) to create synthetic emission maps of a MC. R21/10R_{2-1/1-0} has a bimodal distribution that is a consequence of the excitation properties of each line, given that J=1J=1 reaches local thermal equilibrium (LTE) while J=2J=2 is still sub-thermally excited in the considered clouds. The bimodality of R21/10R_{2-1/1-0} serves as a tracer of the physical properties of different regions of the cloud and it helps constrain local temperatures, densities and opacities. Additionally this bimodal structure shows an important portion of the CO emission comes from diffuse regions of the cloud, suggesting that the commonly used conversion factor of R21/100.7R_{2-1/1-0}\sim 0.7 between both lines may need to be studied further.Comment: 10 pages, 8 figures, accepted to MNRA

    The Formation and Fragmentation of Disks around Primordial Protostars

    Full text link
    The very first stars to form in the Universe heralded an end to the cosmic dark ages and introduced new physical processes that shaped early cosmic evolution. Until now, it was thought that these stars lived short, solitary lives, with only one extremely massive star, or possibly a very wide binary system, forming in each dark matter minihalo. Here we describe numerical simulations that show that these stars were, to the contrary, often members of tight multiple systems. Our results show that the disks that formed around the first young stars were unstable to gravitational fragmentation, possibly producing small binary and higher-order systems that had separations as small as the distance between the Earth and the Sun.Comment: This manuscript has been accepted for publication in Science. This version has not undergone final editing. Please refer to the complete version of record at http://www.sciencemag.org

    Using food intake records to estimate compliance with the Eatwell plate dietary guidelines

    Get PDF
    This work was supported by the Scottish Government's Rural and Environment Science and Analytical Services (RESAS) Division. The original studies, from which the current data were taken, were funded by the Food Standards Agency, UK, and the Biscuit, Cake, Chocolate and Confectionery Association, London, UK.Peer reviewedPostprin

    Polarized Neutron Matter: A Lowest Order Constrained Variational Approach

    Full text link
    In this paper, we calculate some of the polarized neutron matter properties, using the lowest order constrained variational method with the AV18AV_{18} potential and employing a microscopic point of view. A comparison is also made between our results and those of other many-body techniques.Comment: 23 pages, 8 figure

    A new dawn? The Roman Catholic Church and environmental issues

    Get PDF
    This is a PDF version of an article published in New Blackfriars© 1997. The definitive version is available at www.blackwell-synergy.com.This article discusses the stance of the Roman Catholic Church on environmental issues and argues that the Church tends to stay on the fringe rather than get involved. Some of the ways in which Roman Catholic theologians have incorporated environmental issues into theological reflection is discussed, as are environmental challenges facing the Church in Britain (conservation, resources, biodiversity, animal welfare, biotechnology, cooperate/individual ethics, environmental justice, economics/policy development, and global issues)

    Janus Configurations, Chern-Simons Couplings, And The Theta-Angle in N=4 Super Yang-Mills Theory

    Full text link
    We generalize the half-BPS Janus configuration of four-dimensional N=4 super Yang-Mills theory to allow the theta-angle, as well as the gauge coupling, to vary with position. We show that the existence of this generalization is closely related to the existence of novel three-dimensional Chern-Simons theories with N=4 supersymmetry. Another closely related problem, which we also elucidate, is the D3-NS5 system in the presence of a four-dimensional theta-angle.Comment: 66 p

    Competing Ground States of the New Class of Halogen-Bridged Metal Complexes

    Full text link
    Based on a symmetry argument, we study the ground-state properties of halogen-bridged binuclear metal chain complexes. We systematically derive commensurate density-wave solutions from a relevant two-band Peierls-Hubbard model and numerically draw the the ground-state phase diagram as a function of electron-electron correlations, electron-phonon interactions, and doping concentration within the Hartree-Fock approximation. The competition between two types of charge-density-wave states, which has recently been reported experimentally, is indeed demonstrated.Comment: 4 pages, 5 figures embedded, to appear in J. Phys. Soc. Jp

    The effect of 3He impurities on the nonclassical response to oscillation of solid 4He

    Full text link
    We have investigated the influence of impurities on the possible supersolid transition by systematically enriching isotopically-pure 4He (< 1 ppb of 3He) with 3He. The onset of nonclassical rotational inertia is broadened and shifts monotonically to higher temperature with increasing 3He concentration, suggesting that the phenomenon is correlated to the condensation of 3He atoms onto the dislocation network in solid 4He.Comment: 4 page
    corecore