6,343 research outputs found
Microscopic Study of Superfluidity in Dilute Neutron Matter
Singlet -wave superfluidity of dilute neutron matter is studied within the
correlated BCS method, which takes into account both pairing and short-range
correlations. First, the equation of state (EOS) of normal neutron matter is
calculated within the Correlated Basis Function (CBF) method in lowest cluster
order using the and components of the Argonne
potential, assuming trial Jastrow-type correlation functions. The
superfluid gap is then calculated with the corresponding component of the
Argonne potential and the optimally determined correlation functions.
The dependence of our results on the chosen forms for the correlation functions
is studied, and the role of the -wave channel is investigated. Where
comparison is meaningful, the values obtained for the gap within
this simplified scheme are consistent with the results of similar and more
elaborate microscopic methods.Comment: 9 pages, 6 figure
Measuring Coverage of Prolog Programs Using Mutation Testing
Testing is an important aspect in professional software development, both to
avoid and identify bugs as well as to increase maintainability. However,
increasing the number of tests beyond a reasonable amount hinders development
progress. To decide on the completeness of a test suite, many approaches to
assert test coverage have been suggested. Yet, frameworks for logic programs
remain scarce.
In this paper, we introduce a framework for Prolog programs measuring test
coverage using mutations. We elaborate the main ideas of mutation testing and
transfer them to logic programs. To do so, we discuss the usefulness of
different mutations in the context of Prolog and empirically evaluate them in a
new mutation testing framework on different examples.Comment: 16 pages, Accepted for presentation in WFLP 201
High efficiency In Vivo genome engineering with a simplified 15-RVD GoldyTALEN design
published_or_final_versio
Quantification of the uncertainties within the radiotherapy dosimetry chain and their impact on tumour control
BACKGROUND AND PURPOSE:
Dose delivered during radiotherapy has uncertainty arising from a number of sources including machine calibration, treatment planning and delivery and can impact outcomes. Any systematic uncertainties will impact all patients and can continue for extended periods. The impact on tumour control probability (TCP) of the uncertainties within the radiotherapy calibration process has been assessed.
MATERIAL AND METHODS:
The linear-quadratic model was used to simulate the TCP from two prostate cancer and a head and neck (H&N) clinical trial. The uncertainty was separated into four components; 1) initial calibration, 2) systematic shift due to output drift, 3) drift during treatment and 4) daily fluctuations. Simulations were performed for each clinical case to model the variation in TCP present at the end of treatment arising from the different components.
RESULTS:
Overall uncertainty in delivered dose was +/−2.1% (95% confidence interval (CI)), consisting of uncertainty standard deviations of 0.7% in initial calibration, 0.8% due to subsequent calibration shift due to output drift, 0.1% due to drift during treatment, and 0.2% from daily variations. The overall uncertainty of TCP (95% CI) for a population of patients treated on different machines was +/−3%, +/−5%, and +/−3% for simulations based on the two prostate trials and H&N trial respectively.
CONCLUSIONS:
The greatest variation in delivered target volume dose arose from calibration shift due to output drift. Careful monitoring of beam output following initial calibration remains vital and may have a significant impact on clinical outcomes
Clinical use, challenges, and barriers to implementation of deformable image registration in radiotherapy – the need for guidance and QA tools
OBJECTIVE: The aim of this study was to evaluate the current status of the clinical use of deformable image registration (DIR) in radiotherapy and to gain an understanding of the challenges faced by centres in clinical implementation of DIR, including commissioning and quality assurance (QA), and to determine the barriers faced. The goal was to inform whether additional guidance and QA tools were needed. METHODS: A survey focussed on clinical use, metrics used, how centres would like to use DIR in the future and challenges faced, was designed and sent to 71 radiotherapy centres in the UK. Data were gathered specifically on which centres we using DIR clinically, which applications were being used, what commissioning and QA tests were performed, and what barriers were preventing the integration of DIR into the clinical workflow. Centres that did not use DIR clinically were encouraged to fill in the survey and were asked if they have any future plans and in what timescale. RESULTS: 51 out of 71 (70%) radiotherapy centres responded. 47 centres reported access to a commercial software that could perform DIR. 20 centres already used DIR clinically, and 22 centres had plans to implement an application of DIR within 3 years of the survey. The most common clinical application of DIR was to propagate contours from one scan to another (19 centres). In each of the applications, the types of commissioning and QA tests performed varied depending on the type of application and between centres. Some of the key barriers were determining when a DIR was satisfactory including which metrics to use, and lack of resources. CONCLUSION: The survey results highlighted that there is a need for additional guidelines, training, better tools for commissioning DIR software and for the QA of registration results, which should include developing or recommending which quantitative metrics to use. ADVANCES IN KNOWLEDGE: This survey has given a useful picture of the clinical use and lack of use of DIR in UK radiotherapy centres. The survey provided useful insight into how centres commission and QA DIR applications, especially the variability among centres. It was also possible to highlight key barriers to implementation and determine factors that may help overcome this which include the need for additional guidance specific to different applications, better tools and metrics
Rearrangement of the Fermi Surface of Dense Neutron Matter and Direct Urca Cooling of Neutron Stars
It is proposed that a rearrangement of single-particle degrees of freedom may
occur in a portion of the quantum fluid interior of a neutron star. Such a
rearrangement is associated with the pronounced softening of the spin-isospin
collective mode which, under increasing density, leads to pion condensation.
Arguments and estimates based on fundamental relations of many-body theory show
that one realization of this phenomenon could produce very rapid cooling of the
star via a direct nucelon Urca process displaying a dependence on
temperature.Comment: 8 pages, 2 figure
The Effect of the Short-Range Correlations on the Generalized Momentum Distribution in Finite Nuclei
The effect of dynamical short-range correlations on the generalized momentum
distribution in the case of , -closed shell
nuclei is investigated by introducing Jastrow-type correlations in the
harmonic-oscillator model. First, a low order approximation is considered and
applied to the nucleus He. Compact analytical expressions are derived and
numerical results are presented and the effect of center-of-mass corrections is
estimated. Next, an approximation is proposed for of
heavier nuclei, that uses the above correlated of He.
Results are presented for the nucleus O. It is found that the effect of
short-range correlations is significant for rather large values of the momenta
and/or and should be included, along with center of mass corrections
for light nuclei, in a reliable evaluation of in the whole
domain of and .Comment: 29 pages, 8 figures. Further results, figures and discussion for the
CM corrections are added. Accepted by Journal of Physics
Sputter-engineering a first-order magnetic phase transition in sub-15-nm-thick single-crystal FeRh films
Equiatomic FeRh alloys undergo a fascinating first-order metamagnetic phase transition (FOMPT) just above room temperature, which has attracted reinvigorated interest for applications in spintronics. Until now, all attempts to grow nanothin FeRh alloy films have consistently shown that FeRh layers tend to grow in the Volmer-Weber growth mode. Here we show that sputter-grown sub-15-nm-thick FeRh alloy films deposited at low sputter-gas pressure, typically ∼0.1 Pa, onto (001)-oriented MgO substrates, grow in a peening-induced Frank-van der Merwe growth mode for FeRh film thicknesses above 5 nm, circumventing this major drawback. The bombardment of high-energy sputtered atoms, the atom-peening effect, induces a rebalancing between adsorbate-surface and adsorbate-adsorbate interactions, leading to the formation of a smooth continuous nanothin FeRh film. Chemical order in the films increases with the FeRh thickness, tFeRh, and varies monotonically from 0.75 up to 0.9. Specular x-ray diffraction scans around Bragg peaks show Pendellösung fringes for films with tFeRh≥5.2 nm, which reflects in smooth well-ordered densified single-crystal FeRh layers. The nanothin film's roughness varies from 0.6 down to about 0.1 nm as tFeRh increases, and scales linearly with the integral breadth of the rocking curve, proving its microstructured origin. Magnetometry shows that the FOMPT in the nanothin films is qualitatively similar to that of the bulk alloy, except for the thinnest film of 3.7 nm
Bounds on Dark Matter from the ``Atmospheric Neutrino Anomaly''
Bounds are derived on the cross section, flux and energy density of new
particles that may be responsible for the atmospheric neutrino anomaly. Decay of primordial
homogeneous dark matter can be excluded.Comment: 10 pages, TeX (revtex
Waiting times between orders and trades in double-auction markets
In this paper, the survival function of waiting times between orders and the
corresponding trades in a double-auction market is studied both by means of
experiments and of empirical data. It turns out that, already at the level of
order durations, the survival function cannot be represented by a single
exponential, thus ruling out the hypothesis of constant activity during
trading. This fact has direct consequences for market microstructural models.
They must include such a non-exponential behaviour to be realistic.Comment: 19 pages, 3 figures, paper presented at the WEHIA 2005, Colchester,
U
- …