408 research outputs found

    Optical Characterization of Window Materials for Aerospace Applications

    Get PDF
    An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs

    High‐gain lateral pnp bipolar transistors made using focused ion beam implantation

    Get PDF
    We report the fabrication of lateral pnp bipolar transistors using focused ion beam (FIB) implants of boron and phosphorus for the collector and base, respectively. The implants of B+, P+, and P+ + were all at a dose of 1×1013 /cm2 and a beam voltage of 75 kV. These implants defined spaces between the emitter and collector regions of 0.5–1.50 μm; which, after diffusion and zero voltage depletion width effects were considered, produced effective on‐wafer device basewidths of ∼0.2 μm. For the best devices, values of hFE near 100 were obtained with good junction characteristics and at peak collector currents of 10 μA/μm of device width

    Microgravity science at Langley Research Center

    Get PDF
    Although space research is still in an embryonic state, a combination of Earth based and space flight experiments are being coupled to yield a better understanding of the complex interaction of heat and fluid flow on the dynamics of crystal growth. Continued efforts on the ground as well as additional flight opportunities are needed to continue the drive to fully understand the advantages, both scientifically and economically, of microgravity crystal growth

    Tissue Invasion by Entamoeba histolytica: Evidence of Genetic Selection and/or DNA Reorganization Events in Organ Tropism

    Get PDF
    Entamoeba histolytica infection may have various clinical manifestations. Nine out of ten E. histolytica infections remain asymptomatic, while the remainder become invasive and cause disease. The most common form of invasive infection is amebic diarrhea and colitis, whereas the most common extra-intestinal disease is amebic liver abscess. The underlying reasons for the different outcomes are unclear, but a recent study has shown that the parasite genotype is a contributor. To investigate this link further we have examined the genotypes of E. histolytica in stool- and liver abscess-derived samples from the same patients. Analysis of all 18 paired samples (16 from Bangladesh, one from the United States of America, and one from Italy) revealed that the intestinal and liver abscess amebae are genetically distinct. The results suggest either that E. histolytica subpopulations in the same infection show varying organ tropism, or that a DNA reorganization event takes place prior to or during metastasis from intestine to liver

    Homologous Recombination Mediates Functional Recovery of Dysferlin Deficiency following AAV5 Gene Transfer

    Get PDF
    The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes

    The 2015 Plains Elevated Convection at Night Field Project

    Get PDF
    The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night. To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings
    corecore