1,255 research outputs found

    Calcitonin gene-related peptide-expressing sensory neurons and spinal microglial reactivity contribute to pain states in collagen-induced arthritis

    Get PDF
    Objective To evaluate the contribution of sensory neurons in ankle joints and adjacent tissue to the development of pain in collagen‐induced arthritis (CIA), and to determine the relationship between pain and the appearance of clinical signs. Methods Mechanical and heat hypersensitivity and hind paw swelling were assessed in Lewis rats before and until 18 days following collagen immunization. We examined the effect of intrathecal administration of a calcitonin gene‐related peptide (CGRP) antagonist (CGRP8–37) from day 11 to day 18 postimmunization on CIA‐induced hypersensitivity. During CIA development, CGRP and p‐ERK immunoreactivity was quantified in lumbar dorsal root ganglia in which sensory neurons innervating the ankle joint were identified by retrograde labeling with Fluoro‐Gold. Microgliosis in the lumbar dorsal horn was assessed by immunohistochemistry, and release of CGRP evoked by activity of primary afferent fibers was measured using a preparation of isolated dorsal horn with dorsal roots attached. Results CIA was associated with mechanical hypersensitivity that was evident before hind paw swelling and that was exacerbated with the development of swelling. Heat hyperalgesia developed along with swelling. Concomitant with the development of mechanical hypersensitivity, joint innervating neurons exhibited enhanced CGRP expression and an activated phenotype (increased p‐ERK expression), and significant microgliosis became evident in the dorsal horn; these peripheral and central changes were augmented further with disease progression. CGRP release evoked by dorsal root stimulation was higher in the dorsal horn on day 18 in rats with CIA compared to control rats. Prolonged intrathecal administration of CGRP8–37 attenuated established mechanical hypersensitivity and reduced spinal microgliosis. Conclusion Sensory neuron–derived CGRP sustains mechanical hypersensitivity and spinal microglial reactivity in CIA, suggesting that central mechanisms play critical roles in chronic inflammatory pain. Blockade of these central events may provide pain relief in rheumatoid arthritis patients

    Neuron-immune mechanisms contribute to pain in early stages of arthritis

    Get PDF
    Background: Rheumatoid arthritis (RA) patients frequently show weak correlations between the magnitude of pain and inflammation suggesting that mechanisms other than overt peripheral inflammation contribute to pain in RA. We assessed changes in microglial reactivity and spinal excitability and their contribution to pain-like behaviour in the early stages of collagen-induced arthritis (CIA) model. Methods: Mechanically evoked hypersensitivity, spinal nociceptive withdrawal reflexes (NWRs) and hind paw swelling were evaluated in female Lewis rats before and until 13 days following collagen immunization. In the spinal dorsal horn, microgliosis was assayed using immunohistochemistry (Iba-1/p-p38) and cyto(chemo)kine levels in the cerebrospinal fluid (CSF). Intrathecal administration of microglia-targeting drugs A-438079 (P2X7 antagonist) and LHVS (cathepsin S inhibitor) were examined upon hypersensitivity, NWRs, microgliosis andcyto(chemo)kine levels in the early phase of CIA. Results: The early phase of CIA was associated with mechanical allodynia and exaggerated mechanically evoked spinal NWRs, evident before hind paw swelling, and exacerbated with the development of swelling. Concomitant with the development of hypersensitivity was the presence of reactive spinal microgliosis and an increase of IL-1β levels in CSF (just detectable in plasma). Prolonged intrathecal administration of microglial inhibitors attenuated the development of mechanical allodynia, reduced microgliosis and attenuated IL-1β increments. Acute spinal application of either microglial inhibitor significantly diminished the sensitization of the spinal NWRs. Conclusions: Mechanical hypersensitivity in the early phase of CIA is associated with central sensitization that is dependent upon microglial-mediated release of IL-1β in the spinal cord. Blockade of these spinal events may provide pain relief in RA patients

    Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor alpha and beta Repertoires

    Get PDF
    Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse de novo clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRalpha CDR3 motifs played a dominant role, while TCRbeta played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRbeta CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRalpha CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer. IMPORTANCE Several lines of evidence suggest that TCRalpha and TCRbeta repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, alpha and beta. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRalpha and TCRbeta repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection

    Joint morphogenetic cells in the adult mammalian synovium

    Get PDF
    The authors thank all members of the Arthritis & Regenerative Medicine Laboratory, particularly Dr Ana Sergijenko; Drs David Kingsley, Grigori Enikolopov, Fernando Camargo and Lora Heisler for sharing transgenic mice; Drs Henning Wackerhage, Neil Vargesson, Lynda Erskine, Chris Buckley, Francesco Dell’Accio and Frank Luyten for support and helpful discussions; Staff at the University of Aberdeen’s Animal Facility, Microscopy & Histology Facility and Iain Fraser Cytometry Centre for their support. C.D.B. is grateful to Dr Frank Luyten’s support for the experiment in Fig. 8, performed in his laboratory at KU Leuven, Belgium. We are grateful for the following funding: Arthritis Research UK (Grants No. 20050, 19429 and 20775), Medical Research Council (Grant No. MR/L020211/1) and Tenovus Scotland (Grant No. G13/14). A.H.K.R. is supported by the Wellcome Trust through the Scottish Translational Medicine and Therapeutics Initiative (Grant No. WT 085664).Peer reviewedPublisher PD

    Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons

    Get PDF
    Human acute and inflammatory pain requires the expression of voltage-gated sodium channel Nav1.7 but its significance for neuropathic pain is unknown. Here we show that Nav1.7 expression in different sets of mouse sensory and sympathetic neurons underlies distinct types of pain sensation. Ablating Nav1.7 gene (SCN9A) expression in all sensory neurons using Advillin-Cre abolishes mechanical pain, inflammatory pain and reflex withdrawal responses to heat. In contrast, heat-evoked pain is retained when SCN9A is deleted only in Nav1.8-positive nociceptors. Surprisingly, responses to the hotplate test, as well as neuropathic pain, are unaffected when SCN9A is deleted in all sensory neurons. However, deleting SCN9A in both sensory and sympathetic neurons abolishes these pain sensations and recapitulates the pain-free phenotype seen in humans with SCN9A loss-of-function mutations. These observations demonstrate an important role for Nav1.7 in sympathetic neurons in neuropathic pain, and provide possible insights into the mechanisms that underlie gain-of-function Nav1.7-dependent pain conditions

    Machine-learned climate model corrections from a global storm-resolving model

    Full text link
    Due to computational constraints, running global climate models (GCMs) for many years requires a lower spatial grid resolution (50{\gtrsim}50 km) than is optimal for accurately resolving important physical processes. Such processes are approximated in GCMs via subgrid parameterizations, which contribute significantly to the uncertainty in GCM predictions. One approach to improving the accuracy of a coarse-grid global climate model is to add machine-learned state-dependent corrections at each simulation timestep, such that the climate model evolves more like a high-resolution global storm-resolving model (GSRM). We train neural networks to learn the state-dependent temperature, humidity, and radiative flux corrections needed to nudge a 200 km coarse-grid climate model to the evolution of a 3~km fine-grid GSRM. When these corrective ML models are coupled to a year-long coarse-grid climate simulation, the time-mean spatial pattern errors are reduced by 6-25% for land surface temperature and 9-25% for land surface precipitation with respect to a no-ML baseline simulation. The ML-corrected simulations develop other biases in climate and circulation that differ from, but have comparable amplitude to, the baseline simulation

    Emulating Fast Processes in Climate Models

    Full text link
    Cloud microphysical parameterizations in atmospheric models describe the formation and evolution of clouds and precipitation, a central weather and climate process. Cloud-associated latent heating is a primary driver of large and small-scale circulations throughout the global atmosphere, and clouds have important interactions with atmospheric radiation. Clouds are ubiquitous, diverse, and can change rapidly. In this work, we build the first emulator of an entire cloud microphysical parameterization, including fast phase changes. The emulator performs well in offline and online (i.e. when coupled to the rest of the atmospheric model) tests, but shows some developing biases in Antarctica. Sensitivity tests demonstrate that these successes require careful modeling of the mixed discrete-continuous output as well as the input-output structure of the underlying code and physical process.Comment: Accepted at the Machine Learning and the Physical Sciences Workshop at the 36th conference on Neural Information Processing Systems (NeurIPS) December 3, 202

    Human Mesenchymal Stromal Cells Enhance Cartilage Healing in a Murine Joint Surface Injury Model

    Get PDF
    Funding: This research was funded by Versus Arthritis, grant numbers 18480, 19429 and 21156, and the Medical Research Council, grant number MR/L010453/1. Acknowledgments: We thank Pat Evans and Martin Pritchard, Histopathology Dept, RJAH Orthopaedic Hospital, for guidance on histology; Meso Scale Diagnostics, LLC for advice and the loan of equipment for analyte analyses; all members of the Arthritis and Regenerative Medicine Laboratory at the University of Aberdeen, particularly Hui Wang, Sharon Ansboro and Ausra Lionikiene for their help with mouse surgeries and tissue collection, as well as staff at the University of Aberdeen’s animal facility and microscopy and hystology facility for their supportPeer reviewedPublisher PD
    corecore