13 research outputs found

    Additional file 3: of Improving saliva shotgun metagenomics by chemical host DNA depletion

    No full text
    Figure S3. Quality control information. A) DNA quantification pre-library-prep, but post-host-DNA-depletion. The red line indicates the concentration necessary to obtain 1 ng DNA input for library preparation given the volume limitations. B) Total number of quality filtered reads by processing method. Libraries were normalized to obtain twice as many reads for the raw samples compared to host depleted samples. C) Total number non-human reads after filtering using Bowtie 2. (PNG 299 kb

    Additional file 1: of Improving saliva shotgun metagenomics by chemical host DNA depletion

    No full text
    Figure S1. Physical approaches to separate human from microbial cells does not reduce percentage human DNA. Unless otherwise stated, evaluation of size-driven host DNA depletion methods was performed by qPCR analysis of the human-specific PTGER2 gene normalized to raw sample. A) Raw saliva was passed across a 5-μm filter, and the original sample (raw), residue left on top of the filter (res), and filtrate (fil) were compared. B) The pellet of a raw saliva sample after a 30-s centrifugation at 2500g (P), its supernatant (SS), the SS after pelleting all cells at 10,000g for 8 min (FS), and the FS pellet washed with 1× PBS (FSW) were compared. C) Distinct populations of small, medium (med), and large events by flow cytometry of a human fecal sample. D) Percentage of human DNA by shallow shotgun sequencing normalized to raw sample of distinct FACS populations from C. E) The SS of a raw saliva sample after treatment with DNAse. Significance test ordinary one-way ANOVA with Dunnett’s multiple comparisons test p < 0.01. (PNG 521 kb

    Additional file 2: of Improving saliva shotgun metagenomics by chemical host DNA depletion

    No full text
    Figure S2. Optimization of lyPMA conditions for human DNA depletion. qPCR analysis of the relative abundance of the human-specific PTGER2 gene normalized to raw saliva across methods of selective mammalian cell lysis (A) and PMA concentration (B). qPCR analysis of the fold change of the bacteria-specific 16S rRNA gene normalized to raw saliva across methods of selective mammalian cell lysis (C) and PMA concentration (D). SS = slow centrifugation (30 s at 2500 g), son = sonication (15 min at 60 Hz), H2O = osmotic lysis with pure water. (PNG 274 kb

    Additional file 6: of Improving saliva shotgun metagenomics by chemical host DNA depletion

    No full text
    Figure S6. Host depletion via PMA treatment is possible for cryopreserved samples. Raw saliva samples were aliquoted and either frozen immediately at − 20 °C or mixed with a final concentration of 20% glycerol for cryopreservation. The percentage of human reads was assessed by Bowtie2, and the top 15 most abundant genera were assessed by MetaPhlAn2. (PNG 550 kb

    American Gut Project fecal sOTU counts table

    No full text
    The Deblur sOTU counts table for the fecal samples used in the American Gut Project manuscript. The samples were trimmed to a common read length of 125nt, and processed by Deblur (Amir et al mSystems 2017). Blooms were removed (Amir et al mSystems 2017) and any sample with fewer than 1250 sequences was omitted. This table is not rarefied,

    Unweighted UniFrac distances

    No full text
    The unweighted UniFrac distance (Lozupone and Knight AEM 2005) matrix of the 9511 fecal samples used in the American Gut paper. UniFrac was computed using Striped UniFrac (https://github.com/biocore/unifrac). Prior to execution of UniFrac, Deblur (Amir et al mSystems 2017) was run on the samples, all bloom sOTUs were removed (Amir et al mSystems 2017), and samples were rarefied to a depth of 1250 reads (Weiss et al Microbiome 2017). For the phylogeny, fragments were inserted using SEPP (Mirarab et al Pac Symp Biocomput 2012) into the Greengenes 13_5 99% OTU tree (McDonald et al ISME 2012)

    movie_s2.mp4

    No full text
    Placing changes in the microbiome in the context of the American Gut. We accumulated samples over sequencing runs to demonstrate the structural consistency in the data. We demonstrate that while the ICU dataset (https://www.ncbi.nlm.nih.gov/pubmed/27602409) falls within the American Gut samples, they do not fall close to most samples at any of the body sites. We then highlight samples from the United Kingdom, Australia, the United States and other countries to show that nationality does not overcome the variation in body site. We then highlight the utility of the American Gut in meta-analysis by reproducing results from (https://www.ncbi.nlm.nih.gov/pubmed/20668239) and (https://www.ncbi.nlm.nih.gov/pubmed/23861384), using the AGP dataset as the context for dynamic microbiome changes instead of the HMP dataset. We show rapid, complete recovery of C. diff patients following fecal material transplantation and also contextualized the change in an infant gut over time until it settles into an adult state. This demonstrates the power of the American Gut dataset, both as a cohesive study and as a context for other investigations

    ag_tree.tre

    No full text
    The SEPP (Mirarab et al Pac Symp Biocomput 2012) fragment insertion tree used for phylogenetic analyses

    American Gut Project fecal sOTU relative abundance table

    No full text
    The Deblur sOTU relative abundance table for the fecal samples used in the American Gut Project manuscript. The samples were trimmed to a common read length of 125nt, and processed by Deblur (Amir et al mSystems 2017). Blooms were removed (Amir et al mSystems 2017) and any sample with fewer than 1250 sequences was omitted. This table is not rarefied, and is normalized to 1
    corecore