3,075 research outputs found
Recommended from our members
Rotational 3D Printing of Sensor Devices using Reactive Ink Chemistries
This paper charts progress in three key areas of a project supported by both UK
government and UK industry to manufacture novel sensor devices using rotary 3D printing
technology and innovative ink chemistries; (1) the development of an STL file slicing algorithm
that returns constant Z height 2D contour data at a resolution that matches the given print head
setup, allowing digital images to be generated of the correct size without the need for scaling;
(2) the development of image transformation algorithms which allow images to be printed at
higher resolutions using tilted print heads and; (3) the formulation of multi part reaction inks
which combine and react on the substrate to form solid material layers with a finite thickness. A
Direct Light Projection (DLP) technique demonstrated the robustness of the slice data by
constructing fine detailed three dimensional test pieces which were comparable to identical parts
built in an identical way from slice data obtained using commercial software. Material systems
currently under investigation include plaster, stiff polyamides and epoxy polymers and
conductive metallic’s. Early experimental results show conductivities of silver approaching
1.42x105 Siemens/m.Mechanical Engineerin
The receptor protein tyrosine phosphatase PTPRB negatively regulates FGF2-dependent branching morphogenesis
PTPRB is a transmembrane protein tyrosine phosphatase known to regulate blood vessel remodelling and angiogenesis. Here we demonstrate that PTPRB negatively regulates branching morphogenesis in the mammary epithelium. We show that Ptprb is highly expressed in adult mammary stem cells and also, although at lower levels, in estrogen receptor positive luminal cells. During mammary development Ptprb expression is down-regulated during puberty, a period of extensive of ductal outgrowth and branching. In vivo shRNA knockdown of Ptprb in the cleared mammary fat pad transplant assay resulted in smaller epithelial outgrowths with an increased branching density and also increased branching in an in vitro organoid assay. Organoid branching was dependent on stimulation by FGF2, and Ptprb knockdown in mammary epithelial cells resulted in a higher level of FGFR activation and ERK1/2 phosphorylation, both at baseline and following FGF2 stimulation. Therefore, PTPRB regulates branching morphogenesis in the mammary epithelium by modulating the response of the FGFR signalling pathway to FGF stimulation. Considering the importance of branching morphogenesis in multiple taxa, our findings have general importance outside mammary developmental biology
GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and GFRA2 expression in beef cattle
peer-reviewedResidual feed intake (RFI), a measure of feed efficiency, is an important economic and environmental trait in beef production. Selection of low RFI (feed efficient) cattle could maintain levels of production, while decreasing feed costs and methane emissions. However, RFI is a difficult and expensive trait to measure. Identification of single nucleotide polymorphisms (SNPs) associated with RFI may enable rapid, cost effective genomic selection of feed efficient cattle. Genome-wide association studies (GWAS) were conducted in multiple breeds followed by meta-analysis to identify genetic variants associated with RFI and component traits (average daily gain (ADG) and feed intake (FI)) in Irish beef cattle (n = 1492). Expression quantitative trait loci (eQTL) analysis was conducted to identify functional effects of GWAS-identified variants. Twenty-four SNPs were associated (P < 5 × 10−5) with RFI, ADG or FI. The variant rs43555985 exhibited strongest association for RFI (P = 8.28E-06). An eQTL was identified between this variant and GFRA2 (P = 0.0038) where the allele negatively correlated with RFI was associated with increased GFRA2 expression in liver. GFRA2 influences basal metabolic rates, suggesting a mechanism by which genetic variation may contribute to RFI. This study identified SNPs that may be useful both for genomic selection of RFI and for understanding the biology of feed efficiency
Iron deficiency in early pregnancy using serum ferritin and soluble transferrin receptor concentrations are associated with pregnancy and birth outcomes.
Background: There are several biomarkers for measuring iron deficiency (ID) in pregnancy, but evidence of their prevalence in association with inflammation and adverse pregnancy outcomes is inconclusive. Objectives: To describe the prevalence and determinants of ID in women in the first trimester of pregnancy and associations with pregnancy and birth outcomes. Design: A record-linkage cohort study of archived serum samples of women attending first trimester screening and birth and hospital data to ascertain maternal characteristics and pregnancy outcomes. Sera were analysed for iron stores (ferritin; μg/L), tissue iron (soluble transferrin receptor, sTfR; nmol/L) and inflammatory (C-reactive protein, CRP; mg/L) biomarkers. Total body iron (TBI) was calculated from serum ferritin and sTfR concentrations. Multivariate logistic regression analyzed risk factors and pregnancy outcomes associated with ID using the definitions: serum ferritin <12 μg/L, TfR ≥21.0 nmol/L and TBI<0 mg/kg. Results: Of 4,420 women, the prevalence of ID based on ferritin, sTfR and TBI was 19.6%, 15.3% and 15.7%, respectively. Risk factors of ID varied depending on which iron parameter was used and included maternal age <25 years, multiparity, socioeconomic disadvantage, high maternal body weight and inflammation. ID was associated with reduced risk of gestational diabetes (GDM) defined using serum ferritin and TBI, but not sTfR and increased risk of large for gestation age (LGA) infants defined using TBI only. Conclusions: Nearly 1 in 5 Australian women begin pregnancy with ID. Evidence suggests excess maternal weight and inflammation play a role in the relationships between ID and GDM and LGA infants.NHMR
Trajectories of cognitive and perceived functional decline in people with dementia: Findings from the IDEAL programme
INTRODUCTION: Impaired cognition and instrumental activities of daily living (iADL) are key diagnostic features of dementia; however, few studies have compared trajectories of cognition and iADL. METHODS: Participants from the IDEAL study comprised 1537, 1183, and 851 people with dementia, and 1277, 977, and 749 caregivers at baseline, 12 and 24 months, respectively. Addenbrooke's Cognitive Examination-III and Functional Activities Questionnaire were used to measure cognition and iADL, respectively. Scores were converted to deciles. RESULTS: Self-rated iADL declined on average by -0.08 (-0.25, 0.08) decile points per timepoint more than cognition. Informant-rated iADL declined on average by -0.31 (-0.43, -0.18) decile points per timepoint more than cognition. DISCUSSION: Cognition and self-rated iADL declined at a similar rate. Informant-rated iADL declined at a significantly greater rate than cognition. Therefore, either cognition and perceived iADL decline at different rates or informants overestimate increasing iADL difficulties compared to both cognition and self-ratings. Highlights: Self-ratings of the degree of functional difficulties were consistent with cognition Decline in self-rated everyday activities was consistent with cognitive decline Informant-ratings of everyday activities declined more than cognition
The effect of breed and diet type on the global transcriptome of hepatic tissue in beef cattle divergent for feed efficiency
peer-reviewedBackground
Feed efficiency is an important economic and environmental trait in beef production, which can be measured in terms of residual feed intake (RFI). Cattle selected for low-RFI (feed efficient) have similar production levels but decreased feed intake, while also emitting less methane. RFI is difficult and expensive to measure and is not widely adopted in beef production systems. However, development of DNA-based biomarkers for RFI may facilitate its adoption in genomic-assisted breeding programmes. Cattle have been shown to re-rank in terms of RFI across diets and age, while also RFI varies by breed. Therefore, we used RNA-Seq technology to investigate the hepatic transcriptome of RFI-divergent Charolais (CH) and Holstein-Friesian (HF) steers across three dietary phases to identify genes and biological pathways associated with RFI regardless of diet or breed.
Results
Residual feed intake was measured during a high-concentrate phase, a zero-grazed grass phase and a final high-concentrate phase. In total, 322 and 33 differentially expressed genes (DEGs) were identified across all diets for CH and HF steers, respectively. Three genes, GADD45G, HP and MID1IP1, were differentially expressed in CH when both the high-concentrate zero-grazed grass diet were offered. Two canonical pathways were enriched across all diets for CH steers. These canonical pathways were related to immune function.
Conclusions
The absence of common differentially expressed genes across all dietary phases and breeds in this study supports previous reports of the re-ranking of animals in terms of RFI when offered differing diets over their lifetime. However, we have identified biological processes such as the immune response and lipid metabolism as potentially associated with RFI divergence emphasising the previously reported roles of these biological processes with respect to RFI
Identification, utilisation and mapping of novel transcriptome-based markers from blackcurrant (Ribes nigrum)
<p>Abstract</p> <p>Background</p> <p>Deep-level second generation sequencing (2GS) technologies are now being applied to non-model species as a viable and favourable alternative to Sanger sequencing. Large-scale SNP discovery was undertaken in blackcurrant (<it>Ribes nigrum </it>L.) using transcriptome-based 2GS 454 sequencing on the parental genotypes of a reference mapping population, to generate large numbers of novel markers for the construction of a high-density linkage map.</p> <p>Results</p> <p>Over 700,000 reads were produced, from which a total of 7,000 SNPs were found. A subset of polymorphic SNPs was selected to develop a 384-SNP OPA assay using the Illumina BeadXpress platform. Additionally, the data enabled identification of 3,000 novel EST-SSRs. The selected SNPs and SSRs were validated across diverse <it>Ribes </it>germplasm, including mapping populations and other selected <it>Ribes </it>species.</p> <p>SNP-based maps were developed from two blackcurrant mapping populations, incorporating 48% and 27% of assayed SNPs respectively. A relatively high proportion of visually monomorphic SNPs were investigated further by quantitative trait mapping of theta score outputs from BeadStudio analysis, and this enabled additional SNPs to be placed on the two maps.</p> <p>Conclusions</p> <p>The use of 2GS technology for the development of markers is superior to previously described methods, in both numbers of markers and biological informativeness of those markers. Whilst the numbers of reads and assembled contigs were comparable to similar sized studies of other non-model species, here a high proportion of novel genes were discovered across a wide range of putative function and localisation. The potential utility of markers developed using the 2GS approach in downstream breeding applications is discussed.</p
Ab initio structure search and in situ 7Li NMR studies of discharge products in the Li-S battery system.
The high theoretical gravimetric capacity of the Li-S battery system makes it an attractive candidate for numerous energy storage applications. In practice, cell performance is plagued by low practical capacity and poor cycling. In an effort to explore the mechanism of the discharge with the goal of better understanding performance, we examine the Li-S phase diagram using computational techniques and complement this with an in situ (7)Li NMR study of the cell during discharge. Both the computational and experimental studies are consistent with the suggestion that the only solid product formed in the cell is Li2S, formed soon after cell discharge is initiated. In situ NMR spectroscopy also allows the direct observation of soluble Li(+)-species during cell discharge; species that are known to be highly detrimental to capacity retention. We suggest that during the first discharge plateau, S is reduced to soluble polysulfide species concurrently with the formation of a solid component (Li2S) which forms near the beginning of the first plateau, in the cell configuration studied here. The NMR data suggest that the second plateau is defined by the reduction of the residual soluble species to solid product (Li2S). A ternary diagram is presented to rationalize the phases observed with NMR during the discharge pathway and provide thermodynamic underpinnings for the shape of the discharge profile as a function of cell composition.Fellowship support to KAS from the ConvEne IGERT Program of the National Science Foundation (DGE 0801627) is gratefully acknowledged. AJM acknowledges the support from the Winton Programme for the Physics of Sus-tainability. PDM and DSW thank the UK-EPSRC for financial support. This research made use of the shared experimental facilities of the Materials Research Laboratory (MRL), sup-ported by the MRSEC Program of the NSF under Award No. DMR 1121053. The MRL is a member of the NSF-funded Mate-rials Research Facilities Network (www.mrfn.org). CPG and ML thank the U.S. DOE Office of Vehicle Technologies (Con-tract No. DE-AC02-05CH11231) and the EU ERC (via an Ad-vanced Fellowship to CPG) for funding.This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/ja508982p
Comorbid health conditions and their impact on social isolation, loneliness, quality of life, and well-being in people with dementia: longitudinal findings from the IDEAL programme
BackgroundMost people with dementia have multiple health conditions. This study explores (1) number and type of health condition(s) in people with dementia overall and in relation to age, sex, dementia type, and cognition; (2) change in number of health conditions over two years; and (3) whether over time the number of health conditions at baseline is related to social isolation, loneliness, quality of life, and/or well-being.MethodsLongitudinal data from the IDEAL (Improving the experience of Dementia and Enhancing Active Life) cohort were used. Participants comprised people with dementia (n = 1490) living in the community (at baseline) in Great Britain. Health conditions using the Charlson Comorbidity Index, cognition, social isolation, loneliness, quality of life, and well-being were assessed over two years. Mixed effects modelling was used.ResultsOn average participants had 1.8 health conditions at baseline, excluding dementia; increasing to 2.5 conditions over two years. Those with vascular dementia or mixed (Alzheimer’s and vascular) dementia had more health conditions than those with Alzheimer’s disease. People aged ≥ 80 had more health conditions than those aged < 65 years. At baseline having more health conditions was associated with increased loneliness, poorer quality of life, and poorer well-being, but was either minimally or not associated with cognition, sex, and social isolation. Number of health conditions had either minimal or no influence on these variables over time.ConclusionsPeople with dementia in IDEAL generally had multiple health conditions and those with more health conditions were lonelier, had poorer quality of life, and poorer well-being
Interpreting cerebrospinal fluid pleocytosis in HIV in the era of potent antiretroviral therapy
Background: Cerebrospinal fluid (CSF) pleocytosis may be seen in asymptomatic HIV-infected individuals. This finding complicates interpretation of CSF abnormalities when such individuals are
evaluated for other central nervous system infections. The goal of this study was to determine the relationship between CSF pleocytosis, central nervous system (CNS) antiretroviral penetration,
adherence to antiretroviral medication regimens, neurological symptoms and performance on neuropsychological tests.
Methods: Clinically stable HIV-infected individuals at any peripheral blood CD4+ T cell count or any plasma viral load were asked to attend study visits at entry and every 6 months thereafter for at least one year. At each visit, they underwent a standardized neurological and medication history; neurological examination; a brief neuropsychological test battery: venipuncture; lumbar puncture; and assessment of medication adherence. Generalized estimating equations (GEE) were used to assess the relationships between CSF pleocytosis and other variables.
Results: CSF pleocytosis was independently and significantly related to lack of current antiretroviral use (OR 5.9, 95% CI 1.8-18.6, p = 0.003), CD4 count >200/ul (OR 23.4, 95% CI 3.1-177.3, p = 0.002) and detectable plasma HIV RNA (OR 3.3, 95% CI 1.1-9.4, p = 0.03). At visits
where antiretrovirals were used, and taking into account detectable plasma HIV RNA, an antiretroviral regimen that contained two or more agents with good CNS penetration conferred a trend toward lower odds of CSF pleocytosis (OR 0.45, 95% CI 0.18-1.12, p = 0.087).
Conclusion: CSF pleocytosis is a characteristic of HIV disease that varies significantly with easily identifiable clinical and laboratory features. Use of antiretroviral agents decreases the odds of
pleocytosis. This association may be stronger when the regimen contains two or more agents with good CNS penetration.This work was supported by National Institutes of Health grant U54 NS 39406 (AI and CMM)
- …