10,533 research outputs found

    Investigation of critical slowing down in a bistable S-SEED

    Get PDF
    A simulation of S-SEED switching based upon experimental data is developed that includes the effect of critical slowing down. The simulation's accuracy is demonstrated by close agreement with the results from experimental S-SEED switching. The simulation is subsequently used to understand how the phenomenon of critical slowing down applies to switching of an S-SEED and how the effect on photonic analog-to-digital (A/D) converter performance may be minimized.B. A. Clare, K. A. Corbett, K. J. Grant, P. B. Atanackovic, W. Marwood and J. Munc

    Simulation of seismic events induced by CO2 injection at In Salah, Algeria

    Get PDF
    Date of Acceptance: 18/06/2015 Acknowledgments The authors would like to thank the operators of the In Salah JV and JIP, BP, Statoil and Sonatrach, for providing the data shown in this paper, and for giving permission to publish. Midland Valley Exploration are thanked for the use of their Move software for geomechanical restoration. JPV is a Natural Environment Research Council (NERC) Early Career Research Fellow (Grant NE/I021497/1) and ALS is funded by a NERC Partnership Research Grant (Grant NE/I010904).Peer reviewedPublisher PD

    Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity

    Full text link
    Transitions in structural heterogeneity of colloidal depletion gels formed through short-range attractive interactions are correlated with their dynamical arrest. The system is a density and refractive index matched suspension of 0.20 volume fraction poly(methyl methacyrlate) colloids with the non-adsorbing depletant polystyrene added at a size ratio of depletant to colloid of 0.043. As the strength of the short-range attractive interaction is increased, clusters become increasingly structurally heterogeneous, as characterized by number-density fluctuations, and dynamically immobilized, as characterized by the single-particle mean-squared displacement. The number of free colloids in the suspension also progressively declines. As an immobile cluster to gel transition is traversed, structural heterogeneity abruptly decreases. Simultaneously, the mean single-particle dynamics saturates at a localization length on the order of the short-range attractive potential range. Both immobile cluster and gel regimes show dynamical heterogeneity. Non-Gaussian distributions of single particle displacements reveal enhanced populations of dynamical trajectories localized on two different length scales. Similar dependencies of number density fluctuations, free particle number and dynamical length scales on the order of the range of short-range attraction suggests a collective structural origin of dynamic heterogeneity in colloidal gels.Comment: 14 pages, 10 figure

    Lithium Diffusion in Niobium Tungsten Oxide Shear Structures.

    Get PDF
    Niobium tungsten oxides with crystallographic shear structures form a promising class of high-rate Li-ion anode materials. Lithium diffusion within these materials is studied in this work using density functional theory calculations, specifically nudged elastic band calculations and ab initio molecular dynamics simulations. Lithium diffusion is found to occur through jumps between 4-fold coordinated window sites with low activation barriers (80-300 meV) and is constrained to be effectively one-dimensional by the crystallographic shear planes of the structures. We identify a number of other processes, including rattling motions with barriers on the order of the thermal energy at room temperature, and intermediate barrier hops between 4-fold and 5-fold coordinated lithium sites. We demonstrate differences regarding diffusion pathways between different cavity types; within the ReO3-like block units of the structures, cavities at the corners and edges host more isolated diffusion tunnels than those in the interior. Diffusion coefficients are found to be in the range of 10-12 to 10-11 m2 s-1 for lithium concentrations of 0.5 Li/TM. Overall, the results provide a complete picture of the diffusion mechanism in niobium tungsten oxide shear structures, and the structure-property relationships identified in this work can be generalized to the entire family of crystallographic shear phases.Winton Programme for the Physics of Sustainability Winston Churchill Foundation Herchel Smith Foundatio

    First-Principles Study of Localised and Delocalised Electronic States in Crystallographic Shear Phases of Niobium Oxide

    Get PDF
    Crystallographic shear phases of niobium oxide form an interesting family of compounds that have received attention both for their unusual electronic and magnetic properties, as well as their performance as intercalation electrode materials for lithium-ion batteries. Here, we present a first-principles density-functional theory study of the electronic structure and magnetism of H-Nb2_2O5_5, Nb25_{25}O62_{62}, Nb47_{47}O116_{116}, Nb22_{22}O54_{54}, and Nb12_{12}O29_{29}. These compounds feature blocks of niobium-oxygen octahedra as structural units, and we show that this block structure leads to a coexistence of flat and dispersive energy bands, corresponding to localised and delocalised electronic states. Electrons localise in orbitals spanning multiple niobium sites in the plane of the blocks. Localised and delocalised electronic states are both effectively one-dimensional and are partitioned between different types of niobium sites. Flat bands associated with localised electrons are present even at the GGA level, but a correct description of the localisation requires the use of GGA+U or hybrid functionals. We discuss the experimentally observed electrical and magnetic properties of niobium suboxides in light of our results, and argue that their behaviour is similar to that of nn-doped semiconductors, but with a limited capacity for localised electrons. When a threshold of one electron per block is exceeded, metallic electrons are added to existing localised electrons. We propose that this behaviour of shear phases is general for any type of nn-doping, and should transfer to doping by alkali metal (lithium) ions during operation of niobium oxide-based battery electrodes. Future directions for theory and experiment on mixed-metal shear phases are suggested
    • 

    corecore