195 research outputs found

    Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope

    Get PDF
    Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths (1-3 Earth radii). Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars, that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope (JWST). We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15-micron bands to measure CO2 absorption in superEarths, as well as JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and CO2 absorption at 4.3-microns. We project that TESS will discover about eight nearby habitable transiting superEarths. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, CO2) in one to four nearby habitable TESS superEarths.Comment: accepted for PASP; added discussion and figure for habitable planets; abridged Abstrac

    Lower Limits on Aperture Size for an ExoEarth-Detecting Coronagraphic Mission

    Full text link
    The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multi-wavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically-motivated sample of exoEarths.Comment: Accepted for publication in ApJ; 38 pages, 16 Figures, 3 Table

    ATLAST detector needs for direct spectroscopic biosignature characterization in the visible and near-IR

    Get PDF
    Are we alone? Answering this ageless question will be a major focus for astrophysics in coming decades. Our tools will include unprecedentedly large UV-Optical-IR space telescopes working with advanced coronagraphs and starshades. Yet, these facilities will not live up to their full potential without better detectors than we have today. To inform detector development, this paper provides an overview of visible and near-IR (VISIR; λ=0.4−1.8 μm\lambda=0.4-1.8~\mu\textrm{m}) detector needs for the Advanced Technology Large Aperture Space Telescope (ATLAST), specifically for spectroscopic characterization of atmospheric biosignature gasses. We also provide a brief status update on some promising detector technologies for meeting these needs in the context of a passively cooled ATLAST.Comment: 8 pages, Presented 9 August 2015 at SPIE Optics + Photonics, San Diego, C

    Hubble space telescope advanced camera for surveys coronagraphic observations of the dust surrounding HD 100546

    Get PDF
    We present HST ACS coronagraphic observations of HD 100546, a B9.5 star, 103 pc away from the Sun, taken in the F435W, F606W, and F814W bands. Scattered light is detected up to 14" from the star. The observations are consistent with the presence of an extended flattened nebula with the same inclination as the inner disk. The well-known "spiral arms" are clearly observed and trail the rotating disk material. Weaker arms never before reported are also seen. The interarm space becomes brighter, but the structures become more neutral in color at longer wavelengths, which is not consistent with models that assume that they are due to the effects of a warped disk. Along the major disk axis, the colors of the scattered light relative to the star are Δ(F435W - F606W) ≈ 0.0-0.2 mag and Δ(F435W - F814W) ≈ 0.5-1 mag. To explain these colors, we explore the role of asymmetric scattering, reddening, and large minimum sizes on ISM-like grains. We conclude that each of these hypotheses by itself cannot explain the colors. The disk colors are similar to those derived for Kuiper Belt objects, suggesting that the same processes responsible for their colors may be at work here. We argue that we are observing only the geometrically thick, optically thin envelope of the disk, while the optically thick disk responsible for the far-IR emission is undetected. The observed spiral arms are then structures on this envelope. The colors indicate that the extended nebulosity is not a remnant of the infalling envelope but reprocessed disk material

    Phase light curves for extrasolar Jupiters and Saturns

    Full text link
    We predict how a remote observer would see the brightness variations of giant planets similar to Jupiter and Saturn as they orbit their central stars. We model the geometry of Jupiter, Saturn and Saturn's rings for varying orbital and viewing parameters. Scattering properties for the planets and rings at wavelenghts 0.6-0.7 microns follow Pioneer and Voyager observations, namely, planets are forward scattering and rings are backward scattering. Images of the planet with or without rings are simulated and used to calculate the disk-averaged luminosity varying along the orbit, that is, a light curve is generated. We find that the different scattering properties of Jupiter and Saturn (without rings) make a substantial difference in the shape of their light curves. Saturn-size rings increase the apparent luminosity of the planet by a factor of 2-3 for a wide range of geometries. Rings produce asymmetric light curves that are distinct from the light curve of the planet without rings. If radial velocity data are available for the planet, the effect of the ring on the light curve can be distinguished from effects due to orbital eccentricity. Non-ringed planets on eccentric orbits produce light curves with maxima shifted relative to the position of the maximum planet's phase. Given radial velocity data, the amount of the shift restricts the planet's unknown orbital inclination and therefore its mass. Combination of radial velocity data and a light curve for a non-ringed planet on an eccentric orbit can also be used to constrain the surface scattering properties of the planet. To summarize our results for the detectability of exoplanets in reflected light, we present a chart of light curve amplitudes of non-ringed planets for different eccentricities, inclinations, and the viewing azimuthal angles of the observer.Comment: 40 pages, 13 figures, submitted to Ap.

    Hubble and Spitzer Space Telescope Observations of the Debris Disk around the Nearby K Dwarf HD 92945

    Get PDF
    [ABRIDGED] We present the first resolved images of the debris disk around the nearby K dwarf HD 92945. Our F606W (V) and F814W (I) HST/ACS coronagraphic images reveal an inclined, axisymmetric disk consisting of an inner ring 2".0-3".0 (43-65 AU) from the star and an extended outer disk whose surface brightness declines slowly with increasing radius 3".0-5".1 (65-110 AU) from the star. A precipitous drop in the surface brightness beyond 110 AU suggests that the outer disk is truncated at that distance. The radial surface-density profile is peaked at both the inner ring and the outer edge of the disk. The dust in the outer disk scatters neutrally but isotropically, and it has a low V-band albedo of 0.1. We also present new Spitzer MIPS photometry and IRS spectra of HD 92945. These data reveal no infrared excess from the disk shortward of 30 micron and constrain the width of the 70 micron source to < 180 AU. Assuming the dust comprises compact grains of astronomical silicate with a surface-density profile described by our scattered-light model of the disk, we successfully model the 24-350 micron emission with a minimum grain size of a_min = 4.5 micron and a size distribution proportional to a^-3.7 throughout the disk, but with a maximum grain size of 900 micron in the inner ring and 50 micron in the outer disk. Our observations indicate a total dust mass of ~0.001 M_earth. However, they provide contradictory evidence of the dust's physical characteristics: its neutral V-I color and lack of 24 micron emission imply grains larger than a few microns, but its isotropic scattering and low albedo suggest a large population of submicron-sized grains. The dynamical causes of the disk's morphology are unclear, but recent models of dust creation and transport in the presence of migrating planets indicate an advanced state of planet formation around HD 92945.Comment: 29 pages, 10 figures; to be published in The Astronomical Journa

    HST/ACS Images of the GG Tauri Circumbinary Disk

    Full text link
    Hubble Space Telescope Advanced Camera for Surveys images of the young binary GG Tauri and its circumbinary disk in V and I bandpasses were obtained in 2002 and are the most detailed of this system to date. The confirm features previously seen in the disk including: a "gap" apparently caused by shadowing from circumstellar material; an asymmetrical distribution of light about the line of sight on the near edge of the disk; enhanced brightness along the near edge of the disk due to forward scattering; and a compact reflection nebula near the secondary star. New features are seen in the ACS images: two short filaments along the disk; localized but strong variations in disk intensity ("gaplets"); and a "spur" or filament extending from the reflection nebulosity near the secondary. The back side of the disk is detected in the V band for the first time. The disk appears redder than the combined light from the stars, which may be explained by a varied distribution of grain sizes. The brightness asymmetries along the disk suggest that it is asymmetrically illuminated by the stars due to extinction by nonuniform circumstellar material or the illuminated surface of the disk is warped by tidal effects (or perhaps both). Localized, time-dependent brightness variations in the disk are also seen.Comment: 28 pages, 7 figures, accepted for publication in the Astronomical Journa

    High speed quadrant CCDs for adaptive optics

    Get PDF
    The Johns Hopkins University is developing an adaptive optics coronagraph for the study of circumstellar material at high resolution. The first generation instrument corrects for image motion, i.e., wavefront tilt, using an image motion sensor coupled to a high speed tip/tilt mirror. The image motion sensor is built around a quadrant CCD which detects offsets from the null position. The performance of this device and present results demonstrating its operation in the laboratory are discussed
    • …
    corecore