3,442 research outputs found

    Defining Landscape Resistance Values in Least-Cost Connectivity Models for the Invasive Grey Squirrel: A Comparison of Approaches Using Expert-Opinion and Habitat Suitability Modelling

    Get PDF
    Least-cost models are widely used to study the functional connectivity of habitat within a varied landscape matrix. A critical step in the process is identifying resistance values for each land cover based upon the facilitating or impeding impact on species movement. Ideally resistance values would be parameterised with empirical data, but due to a shortage of such information, expert-opinion is often used. However, the use of expert-opinion is seen as subjective, human-centric and unreliable. This study derived resistance values from grey squirrel habitat suitability models (HSM) in order to compare the utility and validity of this approach with more traditional, expert-led methods. Models were built and tested with MaxEnt, using squirrel presence records and a categorical land cover map for Cumbria, UK. Predictions on the likelihood of squirrel occurrence within each land cover type were inverted, providing resistance values which were used to parameterise a leastcost model. The resulting habitat networks were measured and compared to those derived from a least-cost model built with previously collated information from experts. The expert-derived and HSM-inferred least-cost networks differ in precision. The HSM-informed networks were smaller and more fragmented because of the higher resistance values attributed to most habitats. These results are discussed in relation to the applicability of both approaches for conservation and management objectives, providing guidance to researchers and practitioners attempting to apply and interpret a leastcost approach to mapping ecological networks.This project was funded by the Forestry Commission GB and the National School of Forestry at the University of Cumbria. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Using GPS telemetry to validate least-cost modeling of gray squirrel ( Sciurus carolinensis) movement within a fragmented landscape

    Get PDF
    In Britain, the population of native red squirrels Sciurus vulgaris has suffered population declines and local extinctions. Interspecific resource competition and disease spread by the invasive gray squirrel Sciurus carolinensis are the main factors behind the decline. Gray squirrels have adapted to the British landscape so efficiently that they are widely distributed. Knowledge on how gray squirrels are using the landscape matrix and being able to predict their movements will aid management. This study is the first to use global positioning system (GPS) collars on wild gray squirrels to accurately record movements and land cover use within the landscape matrix. This data were used to validate Geographical Information System (GIS) least-cost model predictions of movements and provided much needed information on gray squirrel movement pathways and network use. Buffered least-cost paths and least-cost corridors provide predictions of the most probable movements through the landscape and are seen to perform better than the more expansive least-cost networks which include all possible movements. Applying the knowledge and methodologies gained to current gray squirrel expansion areas, such as Scotland and in Italy, will aid in the prediction of potential movement areas and therefore management of the invasive gray squirrel. The methodologies presented in this study could potentially be used in any landscape and on numerous species

    Addressing environmental and atmospheric challenges for capturing high-precision thermal infrared data in the field of astro-ecology

    Full text link
    Using thermal infrared detectors mounted on drones, and applying techniques from astrophysics, we hope to support the field of conservation ecology by creating an automated pipeline for the detection and identification of certain endangered species and poachers from thermal infrared data. We test part of our system by attempting to detect simulated poachers in the field. Whilst we find that we can detect humans hiding in the field in some types of terrain, we also find several environmental factors that prevent accurate detection, such as ambient heat from the ground, absorption of infrared emission by the atmosphere, obscuring vegetation and spurious sources from the terrain. We discuss the effect of these issues, and potential solutions which will be required for our future vision for a fully automated drone-based global conservation monitoring system.Comment: Published in Proceedings of SPIE Astronomical Telescopes and Instrumentation 2018. 8 pages, 3 figure

    Screen time is associated with adiposity and insulin resistance in children

    Get PDF
    Higher screen time is associated with type 2 diabetes (T2D) risk in adults, but the association with T2D risk markers in children is unclear. We examined associations between self-reported screen time and T2D risk markers in children. Survey of 4495 children aged 9-10 years who had fasting cardiometabolic risk marker assessments, anthropometry measurements and reported daily screen time; objective physical activity was measured in a subset of 2031 children. Compared with an hour or less screen time daily, those reporting screen time over 3 hours had higher ponderal index (1.9%, 95% CI 0.5% to 3.4%), skinfold thickness (4.5%, 0.2% to 8.8%), fat mass index (3.3%, 0.0% to 6.7%), leptin (9.2%, 1.1% to 18.0%) and insulin resistance (10.5%, 4.9% to 16.4%); associations with glucose, HbA1c, physical activity and cardiovascular risk markers were weak or absent. Associations with insulin resistance remained after adjustment for adiposity, socioeconomic markers and physical activity. Strong graded associations between screen time, adiposity and insulin resistance suggest that reducing screen time could facilitate early T2D prevention. While these observations are of considerable public health interest, evidence from randomised controlled trials is needed to suggest causality. [Abstract copyright: Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

    Cluster observations of the midaltitude cusp under strong northward interplanetary magnetic field

    Get PDF
    We report on a multispacecraft cusp observation lasting more than 100 min. We determine the cusp boundary motion and reveal the effect on the cusp size of the interplanetary magnetic field (IMF) changing from southward to northward. The cusp shrinks at the beginning of the IMF rotation and it reexpands at the rate of 0.40° invariant latitude per hour under stable northward IMF. On the basis of plasma signatures inside the cusp, such as counterstreaming electrons with balanced fluxes, we propose that pulsed dual lobe reconnection operates during the time of interest. SC1 and SC4 observations suggest a long-term regular periodicity of the pulsed dual reconnection, which we estimate to be ~1–5 min. Further, the distances from the spacecraft to the reconnection site are estimated on the basis of observations from three satellites. The distance determined using SC1 and SC4 observations is ~15 RE and that determined from SC3 data is ~8 RE. The large-scale speed of the reconnection site sunward motion is ~16 km s-1. We observe also a fast motion of the reconnection site by SC1, which provides new information about the transitional phase after the IMF rotation. Finally, a statistical study of the dependency of plasma convection inside the cusp on the IMF clock angle is performed. The relationship between the cusp stagnation, the dual lobe reconnection process, and the IMF clock angle is discussed
    • …
    corecore