13,690 research outputs found

    “Aurelie Werner”: Intersections Between Hysteria and the Jewish Woman’s Assessment of Jewishness in the late 19th Century

    Get PDF
    Aurelie Werner is a story written by Sara Hirsch Guggenheim, a prominent neo-Orthodox writer in late 19th century Germany. This article analyzes the portrayal of Jewish women during this period, and the ways in which women responded to and coped with exclusion and prejudice. Specifically, Aurelie Werner portrays a young woman\u27s experience of anxiety and uncontrolled emotion as she discerns her place in society as a Jew and as a woman. In the early 20th century, these symptoms would be designated as \u27hysteric\u27 in nature, and would often be used to describe the demeanor of Jewish women as they grappled with Jewish identity in a largely antisemitic society. Aurelie\u27s hysteria is representative of the Jewish woman\u27s lack of control, which is grounded in not having the power or status to control one\u27s own identity

    Interferometry versus projective measurement of anyons

    Get PDF
    The distinct methods for measuring topological charge in a non-abelian anyonic system have been discussed in the literature: projective measurement of a single point-like quasiparticle and interferometric measurement of the total topological charge of a group of quasiparticles. Projective measurement by definition is only applied near a point and will project to a topological charge sector near that point. Thus, if it is to be applied to a \emph{group} of anyons to project to a \emph{total} charge, then the anyons must first be fused one by one to obtain a single anyon carrying the collective charge. We show that interferometric measurement is strictly stronger: Any protocol involving projective measurement can be simulated at low overhead by another protocol involving only interferometric measurement.Comment: 6 pages, 7 figure

    The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina

    Get PDF
    Determining how the motor patterns of the nervous system are converted into the mechanical and behavioral output of the body is a central goal in the study of locomotion. In the case of dipteran flight, a population of small steering muscles controls many of the subtle changes in wing kinematics that allow flies to maneuver rapidly. We filmed the wing motion of tethered Calliphora vicina at high speed and simultaneously recorded multi-channel electromyographic signals from some of the prominent steering muscles in order to correlate kinematics with muscle activity. Using this analysis, we found that the timing of each spike in the basalare muscles was strongly correlated with changes in the deviation of the stroke plane during the downstroke. The relationship was non-linear such that the magnitude of the kinematic response to each muscle spike decreased with increasing levels of stroke deviation. This result suggests that downstroke deviation is controlled in part via the mechanical summation of basalare activity. We also found that interactions among the basalares and muscles III2–III4 determine the maximum forward amplitude of the wingstroke. In addition, activity in muscle I1 appears to participate in a wingbeat gearing mechanism, as previously proposed. Using these results, we have been able to correlate changes in wing kinematics with alteration in the spike rate, firing phase and combinatorial activity of identified steering muscles

    Neuromuscular control of aerodynamic forces and moments in the blowfly, Calliphora vicina

    Get PDF
    Flies are among the most agile of flying insects, a capacity that ultimately results from their nervous system's control over steering muscles and aerodynamic forces during flight. In order to investigate the relationships among neuromuscular control, musculo-skeletal mechanics and flight forces, we captured high-speed, three-dimensional wing kinematics of the blowfly, Calliphora vicina, while simultaneously recording electromyogram signals from prominent steering muscles during visually induced turns. We used the quantified kinematics to calculate the translational and rotational components of aerodynamic forces and moments using a theoretical quasi-steady model of force generation, confirmed using a dynamically scaled mechanical model of a Calliphora wing. We identified three independently controlled features of the wingbeat trajectory – downstroke deviation, dorsal amplitude and mode. Modulation of each of these kinematic features corresponded to both activity in a distinct steering muscle group and a distinct manipulation of the aerodynamic force vector. This functional specificity resulted from the independent control of downstroke and upstroke forces rather than the independent control of separate aerodynamic mechanisms. The predicted contributions of each kinematic feature to body lift, thrust, roll, yaw and pitch are discussed

    Habitable Zone Lifetime of Exoplanets around Main Sequence Stars

    Get PDF
    Funding: Dean's Scholarship at the University of East Anglia.The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star’s main sequence lifetime. We describe the time that a planet spends within the HZ as its ‘‘habitable zone lifetime.’’ The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the ‘‘classic’’ HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a ‘‘hybrid’’ HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79 · 109 years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets’ HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.Publisher PDFPeer reviewe
    corecore