33 research outputs found

    Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods

    Get PDF
    Background: Short-chain fatty acids (SCFAs), metabolites produced through the microbial fermentation of nondigestible dietary components, have key roles in energy homeostasis. Animal research suggests that colon-derived SCFAs modulate feeding behavior via central mechanisms. In humans, increased colonic production of the SCFA propionate acutely reduces energy intake. However, evidence of an effect of colonic propionate on the human brain or reward-based eating behavior is currently unavailable. Objectives: We investigated the effect of increased colonic propionate production on brain anticipatory reward responses during food picture evaluation. We hypothesized that elevated colonic propionate would reduce both reward responses and ad libitum energy intake via stimulation of anorexigenic gut hormone secretion. Design: In a randomized crossover design, 20 healthy nonobese men completed a functional magnetic resonance imaging (fMRI) food picture evaluation task after consumption of control inulin or inulin-propionate ester, a unique dietary compound that selectively augments colonic propionate production. The blood oxygen level–dependent (BOLD) signal was measured in a priori brain regions involved in reward processing, including the caudate, nucleus accumbens, amygdala, anterior insula, and orbitofrontal cortex (n = 18 had analyzable fMRI data). Results: Increasing colonic propionate production reduced BOLD signal during food picture evaluation in the caudate and nucleus accumbens. In the caudate, the reduction in BOLD signal was driven specifically by a lowering of the response to high-energy food. These central effects were partnered with a decrease in subjective appeal of high-energy food pictures and reduced energy intake during an ad libitum meal. These observations were not related to changes in blood peptide YY (PYY), glucagon-like peptide 1 (GLP-1), glucose, or insulin concentrations. Conclusion: Our results suggest that colonic propionate production may play an important role in attenuating reward-based eating behavior via striatal pathways, independent of changes in plasma PYY and GLP-1. This trial was registered at clinicaltrials.gov as NCT00750438

    The screening and management of pituitary dysfunction following traumatic brain injury in adults: British Neurotrauma Group guidance.

    Get PDF
    Pituitary dysfunction is a recognised, but potentially underdiagnosed complication of traumatic brain injury (TBI). Post-traumatic hypopituitarism (PTHP) can have major consequences for patients physically, psychologically, emotionally and socially, leading to reduced quality of life, depression and poor rehabilitation outcome. However, studies on the incidence of PTHP have yielded highly variable findings. The risk factors and pathophysiology of this condition are also not yet fully understood. There is currently no national consensus for the screening and detection of PTHP in patients with TBI, with practice likely varying significantly between centres. In view of this, a guidance development group consisting of expert clinicians involved in the care of patients with TBI, including neurosurgeons, neurologists, neurointensivists and endocrinologists, was convened to formulate national guidance with the aim of facilitating consistency and uniformity in the care of patients with TBI, and ensuring timely detection or exclusion of PTHP where appropriate. This article summarises the current literature on PTHP, and sets out guidance for the screening and management of pituitary dysfunction in adult patients with TBI. It is hoped that future research will lead to more definitive recommendations in the form of guidelines

    On the occurrence of cytochrome P450 in viruses

    Get PDF
    Author Posting. © The Author(s), 2019. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 116(25), (2019):12343-12352, doi:10.1073/pnas.1901080116.Genes encoding cytochrome P450 (CYP; P450) enzymes occur widely in the Archaea, Bacteria, and Eukarya, where they play important roles in metabolism of endogenous regulatory molecules and exogenous chemicals. We now report that genes for multiple and unique P450s occur commonly in giant viruses in the Mimiviridae, Pandoraviridae, and other families in the proposed order Megavirales. P450 genes were also identified in a herpesvirus (Ranid herpesvirus 3) and a phage (Mycobacterium phage Adler). The Adler phage P450 was classified as CYP102L1, and the crystal structure of the open form was solved at 2.5 Å. Genes encoding known redox partners for P450s (cytochrome P450 reductase, ferredoxin and ferredoxin reductase, and flavodoxin and flavodoxin reductase) were not found in any viral genome so far described, implying that host redox partners may drive viral P450 activities. Giant virus P450 proteins share no more than 25% identity with the P450 gene products we identified in Acanthamoeba castellanii, an amoeba host for many giant viruses. Thus, the origin of the unique P450 genes in giant viruses remains unknown. If giant virus P450 genes were acquired from a host, we suggest it could have been from an as yet unknown and possibly ancient host. These studies expand the horizon in the evolution and diversity of the enormously important P450 superfamily. Determining the origin and function of P450s in giant viruses may help to discern the origin of the giant viruses themselves.We thank Dr. David Nes (Texas Tech University) for providing sterols and Dr. Matthieu Legendre and Dr. Chantal Abergel (CNRS, Marseille) for access to the P. celtis sequences. Drs. Irina Arkhipova, Mark Hahn, Judith Luborsky, and Ann Bucklin commented on the manuscript. The research was supported by a USA-UK Fulbright Scholarship and a Royal Society grant (to D.C.L.), the Boston University Superfund Research Program [NIH Grant 5P42ES007381 (to J.J.S. and J.V.G.) and NIH Grant 5U41HG003345 (to J.V.G.)], the European Regional Development Fund and Welsh Government Project BEACON (S.L.K.), the Woods Hole Center for Oceans and Human Health [NIH Grant P01ES021923 and National Science Foundation Grant OCE-1314642 (to J.J.S.)], and NIH Grant R01GM53753 (to T.L.P.).2019-12-0

    NF-ÎşB/Rel-Mediated Regulation of the Neural Fate in Drosophila

    Get PDF
    Two distinct roles are described for Dorsal, Dif and Relish, the three NF-ÎşB/Rel proteins of Drosophila, in the development of the peripheral nervous system. First, these factors regulate transcription of scute during the singling out of sensory organ precursors from clusters of cells expressing the proneural genes achaete and scute. This effect is possibly mediated through binding sites for NF-ÎşB/Rel proteins in a regulatory module of the scute gene required for maintenance of scute expression in precursors as well as repression in cells surrounding precursors. Second, genetic evidence suggests that the receptor Toll-8, Relish, Dif and Dorsal, and the caspase Dredd pathway are active over the entire imaginal disc epithelium, but Toll-8 expression is excluded from sensory organ precursors. Relish promotes rapid turnover of transcripts of the target genes scute and asense through an indirect, post-transcriptional mechanism. We propose that this buffering of gene expression levels serves to keep the neuro-epithelium constantly poised for neurogenesis

    Duodenal-Jejunal bypass liner for the management of Type 2 Diabetes mellitus and obesity - a multicenter randomized controlled trial

    Get PDF
    Objective: The aim of this study was to examine the clinical efficacy and safety of the duodenal-jejunal bypass liner (DJBL) while in situ for 12 months and for 12 months after explantation. Summary Background Data: This is the largest randomized controlled trial (RCT) of the DJBL, a medical device used for the treatment of people with type 2 diabetes mellitus (T2DM) and obesity. Endoscopic interventions have been developed as potential alternatives to those not eligible or fearful of the risks of metabolic surgery. Methods: In this multicenter open-label RCT, 170 adults with inadequately controlled T2DM and obesity were randomized to intensive medical care with or without the DJBL. Primary outcome was the percentage of participants achieving a glycated hemoglobin reduction of ≥20% at 12 months. Secondary outcomes included weight loss and cardiometabolic risk factors at 12 and 24 months. Results: There were no significant differences in the percentage of patients achieving the primary outcome between both groups at 12 months [DJBL 54.6% (n = 30) vs control 55.2% (n = 32); odds ratio (OR) 0.93, 95% confidence interval (CI): 0.44–2.0; P = 0.85]. Twenty-four percent (n = 16) patients achieved ≥15% weight loss in the DJBL group compared to 4% (n = 2) in the controls at 12 months (OR 8.3, 95% CI: 1.8–39; P = .007). The DJBL group experienced superior reductions in systolic blood pressure, serum cholesterol, and alanine transaminase at 12 months. There were more adverse events in the DJBL group. Conclusions: The addition of the DJBL to intensive medical care was associated with superior weight loss, improvements in cardiometabolic risk factors, and fatty liver disease markers, but not glycemia, only while the device was in situ. The benefits of the devices need to be balanced against the higher rate of adverse events when making clinical decisions

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore