72 research outputs found

    Unexpected Tolerance of α-Cleavage of the Prion Protein to Sequence Variations

    Get PDF
    The cellular form of the prion protein, PrPC, undergoes extensive proteolysis at the α site (109K↓H110). Expression of non-cleavable PrPC mutants in transgenic mice correlates with neurotoxicity, suggesting that α-cleavage is important for PrPC physiology. To gain insights into the mechanisms of α-cleavage, we generated a library of PrPC mutants with mutations in the region neighbouring the α-cleavage site. The prevalence of C1, the carboxy adduct of α-cleavage, was determined for each mutant. In cell lines of disparate origin, C1 prevalence was unaffected by variations in charge and hydrophobicity of the region neighbouring the α-cleavage site, and by substitutions of the residues in the palindrome that flanks this site. Instead, α-cleavage was size-dependently impaired by deletions within the domain 106–119. Almost no cleavage was observed upon full deletion of this domain. These results suggest that α-cleavage is executed by an α-PrPase whose activity, despite surprisingly limited sequence specificity, is dependent on the size of the central region of PrPC

    Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8

    Get PDF
    The secreted phosphatidylserine-binding protein milk fat globule epidermal growth factor 8 (Mfge8) mediates engulfment of apoptotic germinal center B cells by tingible-body macrophages (TBMφs). Impairment of this process can contribute to autoimmunity. We show that Mfge8 is identical to the mouse follicular dendritic cell (FDC) marker FDC-M1. In bone-marrow chimeras between wild-type and Mfge8−/− mice, all splenic Mfge8 was derived from FDCs rather than TBMφs. However, Mfge8−/− TBMφs acquired and displayed Mfge8 only when embedded in Mfge8+/+ stroma, or when situated in lymph nodes draining exogenous recombinant Mfge8. These findings indicate a licensing role for FDCs in TBMφ-mediated removal of excess B cells. Lymphotoxin-deficient mice lacked FDCs and splenic Mfge8, and suffer from autoimmunity similar to Mfge8−/− mice. Hence, FDCs facilitate TBMφ-mediated corpse removal, and their malfunction may be involved in autoimmunity

    No Plasmatic Proteomic Signature at Clinical Disease Onset Associated With 11 Year Clinical, Cognitive and MRI Outcomes in Relapsing-Remitting Multiple Sclerosis Patients

    Get PDF
    Background: The clinical course of relapsing-remitting multiple sclerosis (RRMS) is highly heterogeneous and prognostic biomarkers at time of diagnosis are lacking.Objective: We investigated the predictive value of the plasma proteome at time of diagnosis in RRMS patients.Methods: The plasma proteome was interrogated using a novel aptamer-based proteomics platform, which allows to measure the levels of a predefined set of 1310 proteins.Results: In 67 clinically and radiologically well characterized RRMS patients, we found no association between the plasma proteome at diagnosis and clinical, cognitive or MRI outcomes after 11 years.Conclusions: Proteomics studies on cerebrospinal fluid may be better suited to identify prognostic biomarkers in early RRMS

    Clusters of co-abundant proteins in the brain cortex associated with fronto-temporal lobar degeneration

    Get PDF
    Background: \nFrontotemporal lobar degeneration (FTLD) is characterized pathologically by neuronal and glial inclusions of hyperphosphorylated tau or by neuronal cytoplasmic inclusions of TDP43. This study aimed at deciphering the molecular mechanisms leading to these distinct pathological subtypes. \n \nMethods: \nTo this end, we performed an unbiased mass spectrometry-based proteomic and systems-level analysis of the middle frontal gyrus cortices of FTLD-tau (n = 6), FTLD-TDP (n = 15), and control patients (n = 5). We validated these results in an independent patient cohort (total n = 24). \n \nResults: \nThe middle frontal gyrus cortex proteome was most significantly altered in FTLD-tau compared to controls (294 differentially expressed proteins at FDR = 0.05). The proteomic modifications in FTLD-TDP were more heterogeneous (49 differentially expressed proteins at FDR = 0.1). Weighted co-expression network analysis revealed 17 modules of co-regulated proteins, 13 of which were dysregulated in FTLD-tau. These modules included proteins associated with oxidative phosphorylation, scavenger mechanisms, chromatin regulation, and clathrin-mediated transport in both the frontal and temporal cortex of FTLD-tau. The most strongly dysregulated subnetworks identified cyclin-dependent kinase 5 (CDK5) and polypyrimidine tract-binding protein 1 (PTBP1) as key players in the disease process. Dysregulation of 9 of these modules was confirmed in independent validation data sets of FLTD-tau and control temporal and frontal cortex (total n = 24). Dysregulated modules were primarily associated with changes in astrocyte and endothelial cell protein abundance levels, indicating pathological changes in FTD are not limited to neurons. \n \nConclusions: \nUsing this innovative workflow and zooming in on the most strongly dysregulated proteins of the identified modules, we were able to identify disease-associated mechanisms in FTLD-tau with high potential as biomarkers and/or therapeutic targets

    Complement Activation Is Associated With Disease Severity in Multiple Sclerosis.

    Get PDF
    BACKGROUND AND OBJECTIVES Histopathologic studies have identified immunoglobulin (Ig) deposition and complement activation as contributors of CNS tissue damage in multiple sclerosis (MS). Intrathecal IgM synthesis is associated with higher MS disease activity and severity, and IgM is the strongest complement-activating immunoglobulin. In this study, we investigated whether complement components (CCs) and complement activation products (CAPs) are increased in persons with MS, especially in those with an intrathecal IgM synthesis, and whether they are associated with disease severity and progression. METHODS CC and CAP levels were quantified in plasma and CSF of 112 patients with clinically isolated syndrome (CIS), 127 patients with MS (90 relapsing-remitting, 14 primary progressive, and 23 secondary progressive), 31 inflammatory neurologic disease, and 44 symptomatic controls from the Basel CSF databank study. Patients with CIS/MS were followed in the Swiss MS cohort study (median 6.3 years). Levels of CC/CAP between diagnosis groups were compared; in CIS/MS, associations of CC/CAP levels with intrathecal Ig synthesis, baseline Expanded Disability Status Scale (EDSS) scores, MS Severity Score (MSSS), and neurofilament light chain (NfL) levels were investigated by linear regression, adjusted for age, sex, and albumin quotient. RESULTS CSF (but not plasma) levels of C3a, C4a, Ba, and Bb were increased in patients with CIS/MS, being most pronounced in those with an additional intrathecal IgM production. In CIS, doubling of C3a and C4a in CSF was associated with 0.31 (CI 0.06-0.56; p = 0.016) and 0.32 (0.02-0.62; p = 0.041) increased EDSS scores at lumbar puncture. Similarly, doubling of C3a and Ba in CIS/MS was associated with 0.61 (0.19-1.03; p < 0.01) and 0.74 (0.18-1.31; p = 0.016) increased future MSSS. In CIS/MS, CSF levels of C3a, C4a, Ba, and Bb were associated with increased CSF NfL levels, e.g., doubling of C3a was associated with an increase of 58% (Est. 1.58; CI 1.37-1.81; p < 0.0001). DISCUSSION CNS-compartmentalized activation of the classical and alternative pathways of complement is increased in CIS/MS and associated with the presence of an intrathecal IgM production. Increased complement activation within the CSF correlates with EDSS, future MSSS, and NfL levels, supporting the concept that complement activation contributes to MS pathology and disease progression. Complement inhibition should be explored as therapeutic target to attenuate disease severity and progression in MS

    A Multicenter Longitudinal MRI Study Assessing LeMan-PV Software Accuracy in the Detection of White Matter Lesions in Multiple Sclerosis Patients.

    Get PDF
    BACKGROUND Detecting new and enlarged lesions in multiple sclerosis (MS) patients is needed to determine their disease activity. LeMan-PV is a software embedded in the scanner reconstruction system of one vendor, which automatically assesses new and enlarged white matter lesions (NELs) in the follow-up of MS patients; however, multicenter validation studies are lacking. PURPOSE To assess the accuracy of LeMan-PV for the longitudinal detection NEL white-matter MS lesions in a multicenter clinical setting. STUDY TYPE Retrospective, longitudinal. SUBJECTS A total of 206 patients with a definitive MS diagnosis and at least two follow-up MRI studies from five centers participating in the Swiss Multiple Sclerosis Cohort study. Mean age at first follow-up = 45.2 years (range: 36.9-52.8 years); 70 males. FIELD STRENGTH/SEQUENCE Fluid attenuated inversion recovery (FLAIR) and T1-weighted magnetization prepared rapid gradient echo (T1-MPRAGE) sequences at 1.5 T and 3 T. ASSESSMENT The study included 313 MRI pairs of datasets. Data were analyzed with LeMan-PV and compared with a manual "reference standard" provided by a neuroradiologist. A second rater (neurologist) performed the same analysis in a subset of MRI pairs to evaluate the rating-accuracy. The Sensitivity (Se), Specificity (Sp), Accuracy (Acc), F1-score, lesion-wise False-Positive-Rate (aFPR), and other measures were used to assess LeMan-PV performance for the detection of NEL at 1.5 T and 3 T. The performance was also evaluated in the subgroup of 123 MRI pairs at 3 T. STATISTICAL TESTS Intraclass correlation coefficient (ICC) and Cohen's kappa (CK) were used to evaluate the agreement between readers. RESULTS The interreader agreement was high for detecting new lesions (ICC = 0.97, Pvalue < 10-20 , CK = 0.82, P value = 0) and good (ICC = 0.75, P value < 10-12 , CK = 0.68, P value = 0) for detecting enlarged lesions. Across all centers, scanner field strengths (1.5 T, 3 T), and for NEL, LeMan-PV achieved: Acc = 61%, Se = 65%, Sp = 60%, F1-score = 0.44, aFPR = 1.31. When both follow-ups were acquired at 3 T, LeMan-PV accuracy was higher (Acc = 66%, Se = 66%, Sp = 66%, F1-score = 0.28, aFPR = 3.03). DATA CONCLUSION In this multicenter study using clinical data settings acquired at 1.5 T and 3 T, and variations in MRI protocols, LeMan-PV showed similar sensitivity in detecting NEL with respect to other recent 3 T multicentric studies based on neural networks. While LeMan-PV performance is not optimal, its main advantage is that it provides automated clinical decision support integrated into the radiological-routine flow. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2

    Aerosols Transmit Prions to Immunocompetent and Immunodeficient Mice

    Get PDF
    Prions, the agents causing transmissible spongiform encephalopathies, colonize the brain of hosts after oral, parenteral, intralingual, or even transdermal uptake. However, prions are not generally considered to be airborne. Here we report that inbred and crossbred wild-type mice, as well as tga20 transgenic mice overexpressing PrPC, efficiently develop scrapie upon exposure to aerosolized prions. NSE-PrP transgenic mice, which express PrPC selectively in neurons, were also susceptible to airborne prions. Aerogenic infection occurred also in mice lacking B- and T-lymphocytes, NK-cells, follicular dendritic cells or complement components. Brains of diseased mice contained PrPSc and transmitted scrapie when inoculated into further mice. We conclude that aerogenic exposure to prions is very efficacious and can lead to direct invasion of neural pathways without an obligatory replicative phase in lymphoid organs. This previously unappreciated risk for airborne prion transmission may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories

    Biomarkers of disease progression in multiple sclerosis: towards measuring the forest behind the tree

    No full text
    Neuroimmunology is the discipline that specializes in the care of people with multiple sclerosis (PwMS) and related diseases. It is one of the most dynamic fields of clinical neurology, with means to treat PwMS increasing steadily since the early 1990’s. In MS, neurological disability accumulation is driven by two clinically distinct processes: relapses and progression. Relapses are defined as episodes of acute or subacute focal neurological deficits followed by varying degrees of recover. They are the most conspicuous initial clinical manifestations of MS in most patients, but their frequency decreases with time, becoming sparse after 10 to 15 years of disease evolution. Progression is defined as slow neurological disability accumulation occurring independently of relapses and MRI signs of acute focal inflammatory disease activity. It is an insidious process that is difficult to identify clinically, especially early in the disease course, as it may be masked by relapses. Its rate increases with time, becoming the major process driving disability accumulation later in the disease course in a majority of PwMS. All currently available disease modifying therapies (DMTs) are modulators of the peripheral immune system, targeting relapses and acute focal inflammatory disease activity with varying degrees of efficacy. Treatments specifically targeting progression are lacking, although this process contributes overwhelmingly to long-term physical and cognitive disability. Evaluating new drugs to reduce progression rate requires robust tools to quantify this process over the relatively short time frame of clinical trials. Such tools are lacking, but there are promising candidates. The absence of drugs to significantly slow progression and its devastating effect on the life of PwMS is a reality I witness daily in clinical practice. In the last years, I have thus focused my research on identifying and evaluating candidate body fluid biomarkers of progression, as well as on developing tools to measure these biomarkers. It is a challenging endeavor because the physiopathological underpinnings of progression are poorly understood and likely manifold. Several biomarkers will probably be needed to capture this complexity. In this thesis, I start by giving an overview of clinical, immunological, and pathological aspects of MS. I then give an overview of the state of knowledge of one of the most promising body fluid candidate biomarker of progression, as a background to the published manuscripts I selected for the body of this thesis. Finally, I discuss the challenges ahead, provide an overview of a research project I am currently working on thanks to the support of the Fondation privée des Hôpitaux Universitaires de Genève and the Fondation Schmidheiny, and present a new project I would like to start shortly in collaboration with the laboratory of Professor Jean-Charles Sanchez</p

    Update on multiple sclerosis treatments

    No full text
    Relapsing-remitting multiple sclerosis (RRMS) management has dramatically changed over the past decade. New drugs have arrived on the market, allowing for more individualised treatment selection. However, this diversity has increased the complexity of RRMS patient follow-up. In this review, we provide summarised information about treatment efficacy, potential side-effects, follow-up recommendations, vaccinations, and pregnancy safety issues for all currently available disease modifying therapies and those awaiting approval
    corecore