2,031 research outputs found

    Using Remote Sensing and Detection of Early Season Invasives (DESI) to Analyze the Temporal Dynamics of Invasive Cheatgrass (Bromus tectorum)

    Get PDF
    The invasion of exotic annual grasses during the last century has transformed plant habitats and communities worldwide. Cheatgrass (Bromus tectorum) is a winter annual grass that has invaded over 100 million acres of the western United States (Pellant and Hall, 1994. Pellant, 1996). Cheatgrass quickly utilizes available resources especially after a disturbance to the landscape. A major impact of invasion is the increased frequency in fires (D’Antonio and Vitousek, 1992). As cheatgrass is highly successful at invading open and disturbed landscapes at a rapid pace it increases the frequency and severity of fires in arid landscapes (Brooks, 2005). Cheatgrass’ prolific seed production and flammability allows it to competitively exclude native plant species (Seabloom et al., 2003). The successful life strategy of cheatgrass gives a unique spectral image reflectance that can allow the use of remote sensing platforms to track and locate invasions

    Flexibility in Animal Signals Facilitates Adaptation to Rapidly Changing Environments

    Get PDF
    Charles Darwin posited that secondary sexual characteristics result from competition to attract mates. In male songbirds, specialized vocalizations represent secondary sexual characteristics of particular importance because females prefer songs at specific frequencies, amplitudes, and duration. For birds living in human-dominated landscapes, historic selection for song characteristics that convey fitness may compete with novel selective pressures from anthropogenic noise. Here we show that black-capped chickadees (Poecile atricapillus) use shorter, higher-frequency songs when traffic noise is high, and longer, lower-frequency songs when noise abates. We suggest that chickadees balance opposing selective pressures by use low-frequency songs to preserve vocal characteristics of dominance that repel competitors and attract females, and high frequency songs to increase song transmission when their environment is noisy. The remarkable vocal flexibility exhibited by chickadees may be one reason that they thrive in urban environments, and such flexibility may also support subsequent genetic adaptation to an increasingly urbanized world

    Using Hotspot Analysis and Detection of Early Season Invasives (DESI) to analyze the temporal and spatial dynamics of invasive cheatgrass (Bromus tectorum).

    Get PDF
    The invasion of exotic annual grasses during the last century has transformed plant habitats and communities worldwide. Cheatgrass (Bromus tectorum) is a winter annual grass that has invaded over 100 million acres of the western United States (Pellant and Hall, 1994. Pellant, 1996). Cheatgrass quickly utilizes available resources especially after a disturbance to the landscape. A major impact of invasion is the increased frequency in fires (D’Antonio and Vitousek, 1992). As cheatgrass is highly successful at invading open and disturbed landscapes at a rapid pace it increases the frequency and severity of fires in arid landscapes (Brooks, 2005). Cheatgrass’ prolific seed production and flammability allows it to competitively exclude native plant species (Seabloom et al., 2003). The successful life strategy of cheatgrass gives a unique spectral image reflectance that can allow the use of remote sensing platforms to track and locate invasions

    Burkholderia pseudomallei traced to water treatment plant in Australia.

    Get PDF
    Burkholderia pseudomallei was isolated from environmental specimens 1 year after an outbreak of acute melioidosis in a remote coastal community in northwestern Australia. B. pseudomallei was isolated from a water storage tank and from spray formed in a pH-raising aerator unit. Pulsed-field gel electrophoresis confirmed the aerator and storage tank isolates were identical to the outbreak strain, WKo97

    Validation of the Harvard Lyman-α in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor

    Get PDF
    Building on previously published details of the laboratory calibrations of the Harvard Lyman-α photofragment fluorescence hygrometer (HWV) on the NASA ER-2 and WB-57 aircraft, we describe here the validation process for HWV, which includes laboratory calibrations and intercomparisons with other Harvard water vapor instruments at water vapor mixing ratios from 0 to 10 ppmv, followed by in-flight intercomparisons with the same Harvard hygrometers. The observed agreement exhibited in the laboratory and during intercomparisons helps corroborate the accuracy of HWV. In light of the validated accuracy of HWV, we present and evaluate a series of intercomparisons with satellite and balloon borne water vapor instruments made from the upper troposphere to the lower stratosphere in the tropics and midlatitudes. Whether on the NASA ER-2 or WB-57 aircraft, HWV has consistently measured about 1–1.5 ppmv higher than the balloon-borne NOAA/ESRL/GMD frost point hygrometer (CMDL), the NOAA Cryogenic Frost point Hygrometer (CFH), and the Microwave Limb Sounder (MLS) on the Aura satellite in regions of the atmosphere where water vapor is <10 ppmv. Comparisons in the tropics with the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite show large variable differences near the tropopause that converge to ~10% above 460 K, with HWV higher. Results we show from the Aqua Validation and Intercomparison Experiment (AquaVIT) at the AIDA chamber in Karlsruhe do not reflect the observed in-flight differences. We illustrate that the interpretation of the results of comparisons between modeled and measured representations of the seasonal cycle of water entering the lower tropical stratosphere is dictated by which data set is used

    Measurement Invariance in Longitudinal Bifactor Models: Review and Application Based on the p Factor.

    Get PDF
    Bifactor models are increasingly being utilized to study latent constructs such as psychopathology and cognition, which change over the lifespan. Although longitudinal measurement invariance (MI) testing helps ensure valid interpretation of change in a construct over time, this is rarely and inconsistently performed in bifactor models. Our review of MI simulation literature revealed that only one study assessed MI in bifactor models under limited conditions. Recommendations for how to assess MI in bifactor models are suggested based on existing simulation studies of related models. Estimator choice and influence of missing data on MI are also discussed. An empirical example based on a model of the general psychopathology factor (p) elucidates our recommendations, with the present model of p being the first to exhibit residual MI across gender and time. Thus, changes in the ordered-categorical indicators can be attributed to changes in the latent factors. However, further work is needed to clarify MI guidelines for bifactor models, including considering the impact of model complexity and number of indicators. Nonetheless, using the guidelines justified herein to establish MI allows findings from bifactor models to be more confidently interpreted, increasing their comparability and utility

    Even Between-Lap Pacing Despite High Within-Lap Variation During Mountain Biking

    Get PDF
    Purpose: Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. Methods: A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean ± SD age = 27.2 ± 5.0 y, stature = 176.8 ± 8.1 cm, mass = 76.3 ± 11.7 kg, VO2max = 55.1 ± 6.0 mL · kg–1 . min–1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. Results: There was no significant difference in lap times (P = .99) or lap velocity (P = .65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Conclusion: Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise

    Caffeine and Placebo Improved Maximal Exercise Performance Despite Unchanged Motor Cortex Activation and Greater Prefrontal Cortex Deoxygenation

    Get PDF
    Caffeine (CAF) is an ergogenic aid used to improve exercise performance. Independent studies have suggested that caffeine may have the ability to increase corticospinal excitability, thereby decreasing the motor cortex activation required to generate a similar motor output. However, CAF has also been suggested to induce a prefrontal cortex (PFC) deoxygenation. Others have suggested that placebo (PLA) may trigger comparable effects to CAF, as independent studies found PLA effects on motor performance, corticospinal excitability, and PFC oxygenation. Thus, we investigated if CAF and CAF-perceived PLA may improve motor performance, despite the likely unchanged MC activation and greater PFC deoxygenation. Nine participants (26.4 ± 4.8 years old, VO2MAX of 42.2 ± 4.6 mL kg-1 min-1) performed three maximal incremental tests (MITs) in control (no supplementation) and ∼60 min after CAF and PLA ingestion. PFC oxygenation (near-infrared spectroscopy at Fp1 position), MC activation (EEG at Cz position) and vastus lateralis and rectus femoris muscle activity (EMG) were measured throughout the tests. Compared to control, CAF and PLA increased rectus femoris muscle EMG (P = 0.030; F = 2.88; d = 0.84) at 100% of the MIT, and enhanced the peak power output (P = 0.006; F = 12.97; d = 1.8) and time to exhaustion (P = 0.007; F = 12.97; d = 1.8). In contrast, CAF and PLA did not change MC activation, but increased the PFC deoxygenation as indicated by the lower O2Hb (P = 0.001; F = 4.68; d = 1.08) and THb concentrations (P = 0.01; F = 1.96; d = 0.7) at 80 and 100% the MIT duration. These results showed that CAF and CAF-perceived PLA had the ability to improve motor performance, despite unchanged MC activation and greater PFC deoxygenation. The effectiveness of CAF as ergogenic aid to improve MIT performance was challenged

    Steam reforming on transition-metal carbides from density-functional theory

    Full text link
    A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.Comment: 6 pages, 4 figure
    • …
    corecore