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Measurement Invariance in Longitudinal
Bifactor Models: Review and Application
Based on the p Factor
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Abstract
Bifactor models are increasingly being utilized to study latent constructs such as psychopathology and cognition, which
change over the lifespan. Although longitudinal measurement invariance (MI) testing helps ensure valid interpretation of
change in a construct over time, this is rarely and inconsistently performed in bifactor models. Our review of MI simulation
literature revealed that only one study assessed MI in bifactor models under limited conditions. Recommendations for how
to assess MI in bifactor models are suggested based on existing simulation studies of related models. Estimator choice and
influence of missing data on MI are also discussed. An empirical example based on a model of the general psychopathology
factor (p) elucidates our recommendations, with the present model of p being the first to exhibit residual MI across gender
and time. Thus, changes in the ordered-categorical indicators can be attributed to changes in the latent factors. However,
further work is needed to clarify MI guidelines for bifactor models, including considering the impact of model complexity
and number of indicators. Nonetheless, using the guidelines justified herein to establish MI allows findings from bifactor
models to be more confidently interpreted, increasing their comparability and utility.

Keywords
longitudinal bifactor modeling, measurement invariance, review, simulation studies, p factor (general psychopathology)

Bifactor models are increasingly being used to model
multidimensional constructs such as psychopathology
and cognition to generate distinct uncorrelated factors
containing shared variance common across all model
indicators (‘‘general factor’’) and variance shared by
only a subset of indicators (‘‘specific factors’’) (Markon,
2019). The factor orthogonality in these confirmatory
factor models contrasts with the more constrained
higher-order model, where specific factors are nested in
the general factor (Markon, 2019). This orthogonality
suggests that the bifactor model can be used to discern
unique effects simultaneously across factors (Lahey
et al., 2021), although this poses its own challenges
(Markon, 2019). Caution is needed when interpreting
bifactor models, as they tend to overfit data and thus
should not be adjudicated by fit statistics alone (Bonifay
& Cai, 2017). Factor reliabilities tend to be strong for
the general factor, but far less consistent for specific fac-
tors, calling into question their interpretation
(Rodriguez et al., 2016; Watts et al., 2020). Nonetheless,
bifactor models are commonly applied to estimate con-
structs that are known to undergo change over the life-
span (Caspi & Moffitt, 2018; Deary, 2012; Markon,

2019). When modeling any latent construct over time,
longitudinal measurement invariance (MI) should be
established to ensure that observed changes reflect genu-
ine differences in the construct over time and not in the
measurement model (van de Schoot et al., 2012).
However, to date there have been very few studies that
have assessed longitudinal MI in bifactor models. Our
literature review (Figure 1) revealed only 10 articles
across all subject areas that assessed longitudinal MI in
a confirmatory a bifactor model. In these studies, there
was inconsistency in what level MI was tested to, and
which fit indices and cut-offs were used for determining
MI. We postulate this is in large part due to inadequate
guidelines for MI testing in bifactor models; thus, a
review of the existing evidence is warranted.
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This study is organized as follows. Section ‘‘MI
Testing in Bifactor Models’’ focuses on longitudinal MI
testing in bifactor models. First, we outline the methods
of MI testing. Second, to devise practical guidelines for
assessing MI in bifactor models, we review existing MI
cut-offs from simulation studies under a variety of con-
ditions. Third, estimator choices and influence of missing
data onMI are reviewed. Fourth, we review the literature
on longitudinal bifactor models of psychopathology as a
case study to assess how well this literature has adhered
to the above MI testing guidelines. Section ‘‘Empirical
Example’’ provides an empirical example testing MI in a
bifactor model of psychopathology specified by ordered-
categorical indicators; section ‘‘General Discussion’’ con-
cludes with a general discussion.

MI Testing in Bifactor Models

MI Testing Methodology

MI is typically tested using multiple group confirmatory
factor analysis (MG-CFA) with groups (e.g., gender)

defined in a between-subjects manner (Vandenberg &
Lance, 2000). Longitudinal MI is often performed in a
single-group CFA (with wide formatted data), to
account for the dependent nature of the data
(Vandenberg & Lance, 2000). A related approach to
testing MI in ordered-categorical data, item response
theory (IRT), requires testing each item individually for
differential item functioning (DIF) (D’Urso et al., 2021).
This is less practical for large models than CFA-based
MI testing, where MI is tested for all items at once.
Consequently, our literature review of longitudinal MI
testing in bifactor models only revealed one study where
IRT was used (Figure 1), and only CFA was used for
MI testing in the bifactor models of psychopathology
we review below. Furthermore, simulations have
shown that compared with IRT, scale-level MG-CFA
more correctly identifies non-invariance in ordered-
categorical items (D’Urso et al., 2021). Thus, the focus
of the present article is on CFA approaches to MI test-
ing, with parallels drawn with IRT where relevant.

A forward hierarchical approach to MI testing using
nested models has shown greater accuracy in detecting

�

Figure 1. Literature Search of Articles Indicating Longitudinal MI Testing, and the MI Features of Identified Articles.
Note. MI = measurement invariance; Dx2 = chi-square difference test; CFI = comparative fit index; RMSEA = root mean square error of approximation;

SRMR = standardized root mean squared residual.
aSearched on February 22, 2023: (bifactor[All Fields] OR bi-factor[All Fields]) AND (measurement invariance[All Fields] OR measurement equivalence[All

Fields] or invarian*[All Fields]) AND (‘‘longitudinal*’’[All Fields] OR ‘‘time-series’’[All Fields] OR ‘‘prospectiv*’’[All Fields] OR ‘‘follow-up’’[All Fields]). Deutz

et al. (2016) were not identified in this literature search but are included in the text when these 10 studies are mentioned, as all other p-factor studies that

demonstrated longitudinal scalar MI were found using the above search terms. b All but one study used multiple indices or cut-offs.
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non-invariance than starting with the presumption of
invariance (Stark et al., 2006). Starting with a minimally
constrained model, invariance is supported if the model
fit does not substantially deteriorate following addi-
tional constraints. The method for comparing fit between
nested models is a subject of some debate (Putnick &
Bornstein, 2016) and will be addressed more fully below.

The steps for MI testing are as follows. If the model
fits well in each group/timepoint (or fits well in a multi-
group or multiwave model without equity constraints),
this suggests that the number of factors and patterns of
loadings are equivalent in each group/timepoint and
configural invariance is established (van de Schoot et al.,
2012). If configural invariance is not established, this
indicates that the factor structure is not consistent across
groups/timepoints and MI testing is stopped. Following
demonstration of configural invariance, factor loadings
can then be fixed to equity across groups/timepoints
to test for metric (or weak factorial) invariance.
Establishing metric invariance with continuous indica-
tors implies that the respondents attribute the same
meaning to the construct over groups/timepoints (van
de Schoot et al., 2012). Thus, the variances (and cross-
wave covariances) of the latent factors can be compared
across groups/timepoints (Liu et al., 2017). With contin-
uous indicators, this is a sufficient level of invariance if
factor means are not being compared (discussion of
ordered-categorical indicators below). Third, if metric
invariance is established, strong factorial (i.e., scalar)
invariance can be tested by additionally making item
intercepts (i.e., the level of the item, for continuous indi-
cators) or thresholds (i.e., item difficulty, for ordered-
categorical indicators, including binary indicators)
equivalent over groups. With continuous indicators, sca-
lar invariance implies that it is valid to compare factor
means and variances over groups/timepoints (Wu &
Estabrook, 2016), as well as factor covariances (across
timepoints, since bifactor models have orthogonal fac-
tors within a group/timepoint). For example, scalar
invariance would be sufficient to interrogate genuine
change in mean levels of general psychopathology over
development if the model was specified by continuous
subscale scores.

With ordered-categorical indicators, many recom-
mend bypassing testing of metric invariance and simul-
taneously constraining loadings and thresholds, as these
jointly influence the probability of an individual choos-
ing a certain category of an item (P.-Y. Chen et al.,
2020; L. K. Muthén & Muthén, 2017; Sass et al., 2014;
Stark et al., 2006). These simultaneous constraints are
consistent with IRT methods to detect DIF, reflect the
integral functioning of ordered-categorical items, and
have the following advantages. Of foremost concern is
that failure to identify non-invariance at the metric level

could propagate to errors in subsequent steps (Stark
et al., 2006). This is an unnecessary risk to take, since in
ordered-categorical data metric invariance does not
guarantee invariance of the observed responses (Liu
et al., 2017). Furthermore, simulations have shown that
the ordered-categorical scalar model is equally sensitive
to differences across groups in loadings and thresholds,
when compared against an unconstrained configural
model (Stark et al., 2006). Finally, fewer comparisons
decrease the probability of Type I errors (Stark et al.,
2006). However, should researchers wish to specify
metric invariance in ordered-categorical data, this
requires specification of a marker variable which is load-
ing invariant at all occasions and has at least two invar-
iant thresholds which are not based on sparse data (Liu
et al., 2017). An incorrect choice can lead to erroneous
conclusions regarding MI, although modification
indices can help diagnose this problem. We argue this
complexity is unnecessary in light of arguments for
jointly constraining loadings and thresholds (P.-Y. Chen
et al., 2020; L. K. Muthén & Muthén, 2017; Sass et al.,
2014; Stark et al., 2006).

The highest level of MI testing, residual (or strict)
invariance (also called unique factor invariance in
ordered-categorical data (Liu et al., 2017)), can be deter-
mined by fixing group/timepoint residual (i.e., error)
variances to be equal, in addition to equal loadings and
means/thresholds. With continuous indicators, if error
variances are not equal, groups/timepoints can still be
compared on the latent factor, although this is measured
with different amounts of error between groups/time-
points (van de Schoot et al., 2012). However, in ordered-
categorical data, residual invariance must be met to
compare factor means and (co)variances across groups/
time (Liu et al., 2017; Millsap & Yun-Tein, 2004). This
is because factor models based on ordered-categorical
indicators are only indirectly connected to the measured
variables—continuous latent responses are inferred
from the ordered-categorical indicators based on distri-
butional assumptions. If latent responses are not multi-
variate normal, invariance in thresholds and loadings
will not guarantee MI, and thus changes in the means of
the ordered-categorical indicators may not only be
attributed to changes in the latent factor (Millsap &
Yun-Tein, 2004). There are several reasons for non-
invariance and several ways to resolve this. An item may
be worded unclearly and thus be inconsistently inter-
preted. Alternatively, non-invariance may reflect genu-
ine differences over development or across groups. For
example, symptoms of restlessness and concentration
problems have contributed to scalar non-invariance in
longitudinal models of depression in adolescence; at
younger ages, these items may be more reflective of diffi-
culties adjusting to school than depressive symptoms

Neufeld et al. 3



(Schlechter et al., 2023). Minor deviations from invar-
iance could be argued to have limited practical conse-
quences on interpretation of the findings (Putnick &
Bornstein, 2016). Models with greater non-invariance
may imply the latent construct as specified is not compa-
rable across the groups or timepoints in question, and
thus the model should be respecified. If configural invar-
iance is not established, exploratory factor analysis,
Lagrange multipliers, and Wald tests can be used to
identify a properly fitting model across groups/time-
points (Meade et al., 2008). However, it may be possible
to establish partial invariance of the tested model, where
invariance constraints are relaxed for certain parameters
(e.g., loadings that vary across groups), thereby control-
ling for this inequivalence (Vandenberg & Lance, 2000).
However, this exploratory process capitalizes on chance
and thus should be employed sparingly and with strong
theoretical basis. Bayesian approximate MI is a promis-
ing alternative for models which do not achieve exact
invariance. This allows researchers to relax exact equal-
ity constraints, and instead assume that parameters are
approximately equal, while still maintaining compar-
ability of the underlying constructs (Seddig & Leitgöb,
2018). This approach has been successfully employed in
longitudinal CFA (Seddig & Leitgöb, 2018), and in one
bifactor model from the review above (Hawes et al.,
2018); however, limitations still exist and are discussed
below.

Determining MI in Bifactor Models

We review all the existing literature examining
goodness-of-fit indices for discerning MI in bifactor
models. As no simulations have been performed in
bifactor models with ordered-categorical indicators, the
related literature is reviewed. Findings below (summar-
ized in Table 1) are based on simulating multiple levels
of invariance to at least the strong level unless specified.
The goodness-of-fit indices common to all these studies
are comparative fit index (DCFI), root mean squared
error of approximation (DRMSEA), and chi-square dif-
ference test (Dx2).

Studies Using Continuous Indicators. Simulations of first-
order models using continuous indicators recommended
DCFI as the most appropriate goodness-of-fit index for
MI (Cheung & Rensvold, 2002). Invariance was not sup-
ported when CFI worsened in the constrained model by
at least 0.01 (F. F. Chen, 2007; Cheung & Rensvold,
2002), or more strictly, 0.002 (Meade et al., 2008).
Invariance cut-offs in bifactor models have only been
examined at the metric level. Despite the greater com-
plexity in a bifactor model given cross loadings on the

general and specific factors, metric invariance cut-offs
for DCFI in bifactor models indicated by continuous
variables fall within the recommended range for first-
order models (0.003–0.004), with slightly less strict val-
ues for smaller sample sizes (Khojasteh & Lo, 2015,
Table 1). However, to ensure convergence of the bifactor
models, the minimum sample size simulated was n =
800. Until bifactor simulations on smaller sample sizes
are performed, caution is needed in interpreting DCFI in
bifactor models with small sample sizes. First-order
simulations of DCFI 0.002 cut-off demonstrated that n
=400 would only be sufficiently powered to detect large
amounts of non-invariance, n = 400 may be reasonable
to detect non-invariance if high levels of sensitivity are
not required, and power to detect non-invariance was
adequate at n = 800 (Meade et al., 2008). Such conclu-
sions were also echoed by F. F. Chen (2007), who sug-
gested a stricter DCFI cutoff if nł 300 (0.005 instead of
0.01). Finally, DRMSEA is not recommended for MI
testing with continuous indicators both in first-order
and bifactor models (Khojasteh & Lo, 2015; Meade
et al., 2008).

Studies Using Ordered-Categorical Indicators. The above
invariance cut-offs for CFI have been found to be accep-
table in first-order models indicated by ordered-
categorical data, particularly when models are correctly
specified, sample sizes are large (ø 1,000), and if a small
degree of non-invariance is acceptable (Sass et al., 2014).
Specifically, when constraining loadings and thresholds
simultaneously, F. F. Chen’s (2007) cut-offs adequately
identified scalar invariant models (DCFI\0.01,
DRMSEA\0.01). In sample sizes of 1,000, if non-
invariance was on at least 20% of the items, Meade et al’s
(2008) stricter criteria (DCFIø 0.002, DRMSEAø 0.007)
provided enough power to detect large non-invariance,
and some small non-invariance (Sass et al., 2014; Table
1). At smaller sample sizes (n = 600), DCFIø 0.002 was
similarly powered, but DRMSEAø 0.007 could not
detect all cases where large non-invariance was modeled
on 20% of the items. At n = 300, both DCFI and
DRMSEA could not detect all cases where large non-
invariance was modeled on 30% of the items.

Appropriateness of DCFI\0.01 MI Cut-Off in Bifactor
Models. There are several arguments supporting the
more lenient DCFI\0.01 invariance cut-offs (F. F.
Chen, 2007; Cheung & Rensvold, 2002). The first four
arguments apply to using this cut-off in bifactor models
with continuous or ordered-categorical indicators, while
the last arguments only apply to bifactor models with
ordered-categorical indicators. First, models used to
devise Meade et al.’s cut-offs have been criticized as
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being too strict (Little, 2013). Second, cut-offs generated
in bifactor models are more liberal than Meade et al.’s
cut-offs (Khojasteh & Lo, 2015). Third, large sample
sizes (ø 1,000) make DCFI more prone to rejecting
invariance (F. F. Chen, 2007), indicating that a smaller
DCFI may be overly strict in such instances. Fourth, it is
doubtful that a small degree of non-invariance will influ-
ence conclusions related to the means of factor scores
across groups or time, and so using the above criteria is
acceptable (Sass et al., 2014). Fifth, this invariance cut-
off appears to adequately identify invariant models in
first-order categorical data (Sass et al., 2014). Finally,
DCFI\0.01 has previously been used to demonstrate
invariance in bifactor models with ordered-categorical
indicators (Agtarap et al., 2021; Bottesi et al., 2019;
Brett et al., 2020; Deutz et al., 2016, 2018; Fong et al.,
2022; Forbes et al., 2021; Gluschkoff et al., 2019; Hawes
et al., 2018; Porsius et al., 2015), with only one study
using Meade’s stricter cut-offs (Grygiel et al., 2019). It is
also noted that with ordered-categorical indicators in
large sample sizes (n = 1,000), DRMSEA\0.007 rules
out large deviations from non-invariance (Sass et al.,
2014). DRMSEA should thus be considered alongside
DCFI but not in smaller samples.

Irrespective of the findings from DCFI and DRMSEA,
we recommend inspecting change in loadings and thresh-
olds over time (or groups). The more complex bifactor
structure, consisting of one large general factor with
cross-loadings on specific factors, may impede the sensi-
tivity to detect non-invariance (Khojasteh & Lo, 2015).
Furthermore, simulations have shown that in single-factor
models specified by many ordered-categorical items (n =
25), DCFI and DRMSEAø 0.01 did not always detect
scalar non-invariance (D’Urso et al., 2021). This finding is
especially relevant for models of psychopathology, which
should be specified by a comprehensive set of symptoms
from all mental disorders (Lahey et al., 2021).

Chi-square-difference test (Dx2). Dx2 should not be used to
demonstrate MI in bifactor models (regardless of indica-
tor type), as this test has the power to detect inconse-
quential differences between groups in highly complex
models (Cheung & Rensvold, 2002), such as bifactor
models (Khojasteh & Lo, 2015). This problem is further
compounded in models with large sample sizes (Cheung
& Rensvold, 2002; Meade et al., 2008). Although the
goodness-of-fit indices (e.g., CFI, RMSEA) have also
been shown to result in increased rejection of invariance
as sample size increases, this was to a lesser degree than
for Dx2 (F. F. Chen, 2007). In simulations of MI in bifac-
tor models with continuous indicators, the magnitude of
factor loading differences was shown to contribute most
to change in goodness-of-fit indices, but sample size

contributed most to change in Dx2 (Khojasteh & Lo,
2015). Furthermore, a significant Dx2 does not imply that
groups are not comparable, nor does a non-significant
finding guarantee the model is not misspecified (Yuan &
Chan, 2016). RMSEA\0.05 should be obtained for all
increasingly restricted models prior to comparing against
a further restricted model, as done in ordered-categorical
data (Millsap & Yun-Tein, 2004).

Residual Invariance

It has been recommended that the residual invariant
model be assessed for acceptability of overall fit but not
change in goodness of fit statistics (Millsap & Yun-Tein,
2004). Although no goodness of fit cut-offs have been
developed for this level of invariance in ordered-
categorical data (let alone for higher-order models),
DCFI\0.01 has been shown to be supportive of residual
MI in first-order models with continuous indicators (F.
F. Chen, 2007; Cheung & Rensvold, 2002, Table 1). In
the absence of more relevant simulations, this cut-off
could be cautiously applied to higher-order models with
ordered-categorical indicators.

In sum, despite the limited literature on MI in
bifactor models, findings from related studies support
determining invariance of a such a model based on
DCFI\0.01. Dx2 is inappropriate for invariance testing
of bifactor models due the high complexity of such mod-
els, and is even more problematic in large samples.
DRMSEA is not recommended for MI testing with con-
tinuous indicators, but in models specified by ordered-
categorical indicators and large sample sizes
DRMSEA\0.007 is broadly indicative of invariance.
When using ordered-categorical indicators, invariance
should be assessed to the residual level. Researchers
should use the above cut-off guidelines cautiously,
acknowledging the multitude of factors that can affect
model results (F. F. Chen, 2007; D’Urso et al., 2021;
Sass et al., 2014). This degree of skepticism suggests
evaluating DIF even if invariance cut-offs are met,
something we address in the empirical example.
However, we first discuss estimator choice and influence
of missing data in MI testing.

Estimator Choices and Missingness in MI Testing

With continuous data, full information maximum likeli-
hood (ML) estimation is favored for CFA, as it effi-
ciently produces unbiased parameter estimates in
normally distributed data, and robust methods (MLR)
can address deviations to normality (Zhong & Yuan,
2011). Of the estimators appropriate for ordered-
categorical data, none are perfectly suited to MI testing
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(Table 2). However, the weighted least squares mean
and variance adjusted estimator (WLSMV) appears
most appropriate for MI testing with polytomous data,
where the testing of residual invariance is necessary (Liu
et al., 2017; Millsap & Yun-Tein, 2004). Residual MI
testing is not currently possible with categorical ML esti-
mation due to the computationally intensive numerical
integration required (B. O. Muthén et al., 2015).
Conversely, Bayes has not yet been developed for
threshold invariance testing in polytomous data (B. O.
Muthén et al., 2015). In contrast to other estimators,
WLSMV’s computational burden does not increase
exponentially with an increase in factors or sample size,
but models specified by many items may be uniquely
laborious for WLSMV (B. O. Muthén et al., 2015).
Thus, single-group longitudinal MI testing may be par-
ticularly problematic for WLSMV, as the number of
items is multiplied by the number of waves tested. This
highlights the need for Bayesian and ML estimators to
be developed to test MI using polytomous data, allow-
ing researchers to choose an estimator which minimizes
computational burden for a given model.

Of the estimators reviewed, WLSMV is the only lim-
ited information estimator, so parameter estimates and
tests of model fit could be biased if data are missing at
random (Liu et al., 2017). However, with sample sizes of

500 or 1,000, and missing data rates up to 50% across
groups, scalar MI simulations showed that WLSMV
resulted in acceptably small levels of mean relative bias
in loading estimates and their standard errors across vary-
ing levels of invariance in thresholds and loadings (P.-Y.
Chen et al., 2020). When sample sizes were small (n =
300), standard errors were biased only when missingness
was 50%, but were acceptable at 30% missingness.
Multiple imputation in data of various distributions can
mitigate missingness bias, yet currently this cannot resolve
MI testing issues in large samples and complex models.
Thus far, only approaches to pooling Dx2 from multiply
imputed datasets have been tested (Liu & Sriutaisuk,
2021). Finally, predictors of missingness can be included
in WLSMV models to help mimize missingness bias
(Asparouhov & Múthen, 2010), yet this can introduce
infeasible levels of computational burden in models with
many indicators (B. O.Muthén et al., 2015).

Even with ML and continuous data, simulations have
shown that severely unbalanced groups (e.g., due to
missing data over time) can mask non-invariance (Yoon
& Lai, 2018). However, when testing scalar invariance
when one group was half the size of the other,
DRMSEA was not adversely affected. Under these con-
ditions, scalar non-invariance was found to improve
DCFI to a small degree (0.005), but this was only tested

Table 2. Properties of Estimators Appropriate for Ordered-Categorical Dataa.

Statistical packageb

WLSMV ML-integrationc ML-MHRM Bayesian

Mplus, lavaan Mplus, MIRT MIRT Mplus, Blavaan

Properties relevant to MI testingb

Ability to model threshold invariance in polytomous data Yes Yes Yes No, binary only
Approximate fit statistics for comparing nested models Yes Yes Yes Possiblyd

Ability to model residual variances and covariances Yes No No Yes
Other relevant properties

Full-information estimator No Yes Yes Yes
Polytomous data estimation speed equivalent to binary Yes No—slower Yes No—slower
Binary empty cells may be problematic Yes—see

Supplement 1
No No No

Computational burden
Increases exponentially with a linear increase
in factors (4+ problematic)

No Yes No No

Increases exponentially with a linear increase
in variables (50+ problematic)

Yes No No No

Increases in large samples (e.g. 1,000+ ) No Yes Yes Yes

Note. WLSMV = weighted least squares mean and variance adjusted; ML = maximum likelihood; MHRM = Metropolis-Hastings Robbins-Monro

algorithm; MI = measurement invariance; CFI = comparative fit index; RMSEA = root mean square error of approximation.
aUnless specified, findings for MHRM from Cai (2010), other estimator findings from B. O. Muthén et al. (2015). b We focus on two widely-used

packages: Mplus (https://www.statmodel.com) and R with packages lavaan (https://cran.r-project.org/web/packages/lavaan/lavaan.pdf), MIRT

(Multidimensional Item Response Theory, https://cran.r-project.org/web/packages/mirt/mirt.pdf), and Blavaan (https://cran.r-project.org/web/packages/

blavaan/blavaan.pdf). c with numerical integration using fixed or adaptive quadrature (Mplus and MIRT for details). In Mplus, ML-categorical is always

robustly estimated to account for non-normality. d Bayesian analogues for approximate fit statistics (e.g., CFI, RMSEA) are comparable to ML values, so

ML guidelines for overall model fit apply, but MI cut-off guidelines may not (Garnier-Villarreal & Jorgensen, 2020). Posterior predictive p-value (PPPV) is

analogous to chi-square, so comparable Type I errors in large sample sizes.
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in small sample sizes (groups of 200 and 400 (Yoon &
Lai, 2018). These findings underscore the importance of
assessing several fit indices when drawing conclusions
regarding invariance between unbalanced groups.
Although prior simulations did not recommend
DRMSEA for MI testing with continuous indicators,
only equal sample sizes were tested (Khojasteh & Lo,
2015; Meade et al., 2008). With unbalanced groups, this
fit index appears to be optimal.

To summarize, WLSMV is recommended for MI
testing using polytomous data, being the only estimator
that currently allows residual invariance testing in such
variables. However, the computational burden for
WLSMV makes estimation slow and possibly infeasible
for single-group longitudinal MI testing of large models.
WLSMV has been shown to be acceptable for scalar MI
testing in ordered-categorical data with missing data
rates up to 50% in sample sizes of 500 or more. Even
with ML and continuous data, researchers testing MI
should be wary that a large degree of size imbalance
across groups may affect DCFI, although DRMSEA
does not appear to be affected.

Thus far we have reviewed the importance of estab-
lishing longitudinal MI in bifactor models, provided
guidance on MI cut-offs to employ when ordered-
categorical indicators are utilized, and outlined estima-
tor choices and missing data considerations. We now
focus on bifactor models of psychopathology over two
or more waves of data as a case study for how ade-
quately this literature has addressedMI to date.

Limitations of MI Testing in Bifactor Models of
Psychopathology

We reviewed confirmatory bifactor models of psycho-
pathology (the ‘‘p’’ factor, or simply ‘‘p’’) encompassing
internalizing and externalizing domains, the most-
studied key underlying processes in psychopathology
(Caspi &Moffitt, 2018). Studies reporting bifactor mod-
els generated in at least two waves were assessed for
demonstration of longitudinal MI. To date, few existing
bifactor models of psychopathology have established
strong longitudinal MI. Some studies assessed stability
or correlation of factors over time based on different
models at each wave, without having established even
the lowest level of MI (Class et al., 2019; Deutz et al.,
2020; Greene & Eaton, 2017). More studies demon-
strated longitudinal configural invariance when the
same confirmatory model yielded acceptable fit at each
wave (Castellanos-Ryan et al., 2016; Deutz et al., 2016,
2018; Forbes et al., 2021; Gluschkoff et al., 2019;
McElroy et al., 2018; Noordhof et al., 2015; Olino et al.,

2018; Snyder et al., 2017). However, many studies did
not impose further MI tests (McElroy et al., 2018) or
adequately test for or demonstrate strong MI
(Castellanos-Ryan et al., 2016; Noordhof et al., 2015;
Olino et al., 2018; Snyder et al., 2017). In studies where
strong MI has not been demonstrated over time, the
meaning of the construct and levels of the underlying
items are not known to be equal across time points (van
de Schoot et al., 2012). Therefore, interpretation of the
longitudinal associations in such models is questionable.

Inconsistent criteria have been applied in the few
studies of p which have tested longitudinal MI beyond
configural invariance. One tested for strong invariance
by constraining factor loadings and thresholds to be
equal over three waves (Noordhof et al., 2015).
Although this model exhibited good fit, it was not com-
pared with an unconstrained model, and thus invariance
is unknown. Three studies modeling continuous indica-
tors tested for metric invariance (weak factorial invar-
iance) by constraining the factor loadings to be equal
over time (Castellanos-Ryan et al., 2016; Olino et al.,
2018; Snyder et al., 2017). Snyder et al’s model was sup-
portive of metric invariance, but they did not then test
strong invariance. The remaining studies rejected metric
invariance, but for different reasons: the metric model
yielded unacceptable fit (Olino et al., 2018), or Dx2 indi-
cated that constrained models had significantly worse fit
than unconstrained models (Castellanos-Ryan et al.,
2016). Although lack of metric invariance is undeniable
in Olino and colleagues’ study, the latter study had a
large sample size (.2,000): under such circumstances,
Dx2 is highly sensitive to inconsequential differences, and
thus Dx2 may not be an accurate indicator of invariance
(F. F. Chen, 2007; Cheung & Rensvold, 2002; Meade
et al., 2008). When a more widely accepted indicator of
invariance was utilized (change in Comparative Fit
Index, DCFI ł 0.01 (Putnick & Bornstein, 2016), strong
longitudinal MI was established in bifactor models speci-
fied by ordered-categorical variables (Deutz et al., 2016,
2018; Forbes et al., 2021; Gluschkoff et al., 2019).

When testing MI, none of the above studies discussed
how the dual factor loadings in the bifactor model may
influence MI cut-offs. Of the models tested beyond con-
figural MI specified by ordered-categorical indicators,
only half mentioned the limitations of current MI cut-
offs for this type of data. None tested residual invar-
iance, as has been argued is required in ordered-
categorical data (Liu et al., 2017; Millsap & Yun-Tein,
2004). This exemplifies the importance of the present
review of MI cut-offs in bifactor models to provide
guidelines for applied researchers who utilize such mod-
els in future. We now turn to an empirical example to
illustrate how these guidelines can be employed.
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Empirical Example

The present example longitudinally extends a model
published on baseline data of 106 items from measures
of depressive, anxiety, obsessive, antisocial behavioral,
and psychotic-like symptoms, as well as self-esteem and
well-being (St Clair et al., 2017). At baseline, compared
with first-order (single-factor and correlated factor)
models and a second order model, the most theoretically
plausible (and best-fitting) model was a Schmid-Leiman
bifactor transformation (Brown, 2006) of a five-factor
Confirmatory Factor Analytic model (i.e., a general fac-
tor, p, with five orthogonal specific factors; Figure 2; St
Clair et al., 2017). This model was more theoretically
plausible than other models for reasons such as: the cor-
related factor models had unacceptably high correla-
tions (r . .85) between the factors, indicating a general
factor underlying all factors; the model with four specific
factors had antisocial items loading with obsessions,
compulsions, and psychotic symptoms—and there is no
precedence for antisocial symptoms loading with the lat-
ter symptoms. All factors of the final model were set to
be orthogonal (uncorrelated), as shared variance is cap-
tured in the general factor (Lahey et al., 2021). In addi-
tion, a positive method specific factor was included to
account for items’ positive/negative wording. This better
addresses the different framing of questions than simply
recoding positively worded items as others have done

(McElroy et al., 2018) and facilitates accurate interpreta-
tion of factors (Gignac, 2007).

We theorized that the present bifactor model would
demonstrate strong MI, as found in prior bifactor mod-
els of psychopathology which yielded specific internaliz-
ing and externalizing factors (gender invariance (Deutz
et al., 2016, 2018)) and longitudinal invariance (Deutz
et al., 2016, 2018; Forbes et al., 2021; Gluschkoff et al.,
2019).

Participants

About 2,403 adolescents and young adults aged 14–24
(54% female, n = 1,287) were recruited in the United
Kingdom from Cambridgeshire and London, compris-
ing the NeuroScience in Psychiatry Network (NSPN)
cohort (Kiddle et al., 2018). This sample was broadly
representative on socio-demographic features of this age
group from English and Wales census data (Kiddle
et al., 2018). Ethical approval was obtained from the
National Health Service Research Ethics Service
(#97546). The self-report items in the bifactor model
were obtained from a home questionnaire pack mailed
to participants’ home. Three waves were collected annu-
ally (on average, Wave 2 was collected 13.5 months (SD
= 3.64) after Wave 1, and Wave 3 was collected 27.2
months (SD= 3.20) after Wave 1).

Figure 2. Bifactor Model From Empirical Example.
Note. p = general factor of psychopathology; t = thresholds (item categories minus 1). Specific factors were named based on item loadings (St Clair et al.,

2017; Supplemental Table S1). Items are illustrative of the 106 items in the model; the positive methods specific factor is omitted for simplicity.
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Measures

The provenance of items used in the bifactor model has
been described previously (St Clair et al., 2017);
Supplemental Table S1 provides a summary. Items were
ordinal or binary and thus were specified as ordered-
categorical in analyses. Study data were collected and
managed using REDCap electronic data capture tools
hosted at the University of Cambridge, UK (Harris
et al., 2009, 2019). REDCap (Research Electronic Data
Capture) is a secure, web-based software platform
designed to support data capture for research studies,
providing (a) an intuitive interface for validated data
capture; (b) audit trails for tracking data manipulation
and export procedures; (c) automated export procedures
for seamless data downloads to common statistical
packages; and (d) procedures for data integration and
interoperability with external sources. Data and addi-
tional information on measures can be requested here:
https://nspn.org.uk.

Statistical Analyses

Bifactor Modeling. The Schmid-Leiman transformation
was performed as outlined above. For model identifica-
tion, factor variances were fixed to one, and factor
means fixed to zero (Liu et al., 2017; L. K. Muthén &
Muthén, 2017). Another approach to model identifica-
tion is to fix a factor loading to one, and constrain the
intercept/threshold for that same variable to zero (Liu
et al., 2017). However, if during MI testing a non-
invariant parameter is constrained, this can result in
model misfit and erroneous conclusions regarding MI
(Liu et al., 2017). To avoid such problems, the former
approach was chosen.

Invariance Testing. To test gender invariance, the optimal
Schmid-Leiman transformation reported at baseline (St
Clair et al., 2017) was performed separately in each gen-
der at baseline to test appropriateness of fit in each
group (Meade et al., 2008). Consistent with the original
modeling, theoretically relevant modifications which
were applicable to both genders were considered for low
loadings (\0.30 for the general factor and \0.15 for
specific factors) and high modification indices (.100,
due to the large number of participants in the present
sample (St Clair et al., 2017). A theoretically relevant
modification could, for example, be to drop a low load-
ing item from a specific factor if the item was not unam-
biguously conceptually related to the other items in that
specific factor.). Modifications meeting these criteria
were applied to all subsequent models. Gender invar-
iance was tested using a multigroup confirmatory factor
analytic framework (van de Schoot et al., 2012). Both

genders were modeled together following the increas-
ingly restrictive invariance tests outlined below.

For establishing longitudinal invariance, the model
was first performed separately at each wave to test for
appropriateness of fit over time (Meade et al., 2008).
Following this, a single-group model (wide formatted
data) with 318 items from Waves 1–3 was tested. As this
21-factor model did not converge, single-group MI was
tested in a piecewise fashion with two waves at a time.
These models were contrasted against a multigroup
model, as all waves were able to be tested at once in long
formatted data. We then compared computational bur-
den and MI findings from the piecewise single-group
models versus the one multigroup model. Although the
single-group CFA better accounts for the dependent
nature of the data, the much larger array of data can
result in improper solutions, particularly for models
with many items (Vandenberg & Lance, 2000), as we
observed. Furthermore, multigroup simulation findings
indicate that, at the level of imbalance, we observe in
groups due to attrition (up to 50%), estimates and stan-
dard errors are not biased, and DRMSEA and most
likely DCFI are appropriate tests of MI (P.-Y. Chen
et al., 2020; Yoon & Lai, 2018). To our knowledge, no
one has contrasted longitudinal MI findings from single-
group versus multigroup models. However, given the
importance in structural psychopathology research of
specifying larger models with more comprehensive sets
of symptoms modeled over the lifespan (Caspi &
Moffitt, 2018; Lahey et al., 2021), we anticipate others
will also be faced with convergence issues when testing
longitudinal MI in single-group models. Thus, the possi-
bility of equivalent identification of longitudinal MI in a
multigroup model is important to explore. Finally,
metric invariance was not tested on its own given the
multiple advantages to constraining loadings and
thresholds simultaneously, as we previously reviewed.
Adhering to the key study elucidating MI cut-offs in
ordered-categorical data (Sass et al., 2014), we simulta-
neously constrained these parameters and compared fit
statistics against the configural model. This allows con-
textualizing the present findings with these relevant
simulations.

Specification of the increasingly constrained models
was as follows. All models used the WLSMV estimator
with theta parameterization and a probit link, as appro-
priate for invariance testing of ordered-categorical indi-
cators (Millsap & Yun-Tein, 2004). For the configural
model, thresholds and factor loadings were free across
groups, factor variances and residual variances were
fixed at one in all groups, and factor means fixed at zero
in all groups (L. K. Muthén & Muthén, 2017).
Correlated residuals were modeled identically at each
wave (Joo & Kim, 2019) for indicators that were related
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but distinct (St Clair et al., 2017). For scalar and residual
invariance models, the factor variances were fixed to one
in one group and freed in the other group(s), and factor
means were fixed to zero in one group and freed in the
other group(s) (L. K. Muthén & Muthén, 2017). Both
models had factor loadings and thresholds constrained
to be equal across groups. In the scalar model, residual
variances were fixed to one in one group and freed in the
other group(s), but the residual invariance model had
residual variances fixed to one in all groups. Residuals
were correlated over time for modification indices .100.

Criteria to assess measurement invariance: To assess
invariance, a CFI difference between the scalar and con-
figural model of \0.01 was required (F. F. Chen, 2007;
Cheung & Rensvold, 2002), as justified in the preceding
review. Given the large sample size and ordered-
categorical data, we also considered DRMSEA\0.007
supportive of invariance (Sass et al., 2014). Correct spe-
cification of each increasingly restrictive model was
ensured by requiring RMSEA\0.05 for all models
(Millsap & Yun-Tein, 2004; Yuan & Chan, 2016). As no
goodness of fit cut-offs has been developed for residual
invariance in ordered-categorical data (let alone for
higher-order models), the residual invariant model was
primarily assessed for acceptability of overall fit
(Millsap & Yun-Tein, 2004), with a DCFI\0.01 com-
pared to the scalar model additionally supportive of resi-
dual invariance (F. F. Chen, 2007; Cheung & Rensvold,
2002).

To address concerns that DCFI and DRMSEA may
not adequately detect parameter differences across
groups in factors specified by many items (D’Urso et al.,
2021), the magnitude of loading and threshold differ-
ences over time were assessed regardless of whether these
fit indices supported invariance. To quantify non-
equivalence, we considered the following. First, we cal-
culated the average difference when invariance viola-
tions were at least small (loading differences 0.10+ and
threshold differences 0.25+ , D’Urso et al., 2021; Nye
et al., 2019). These are smaller violations than many
have used to measure non-equivalence in models which
are not bifactor (P.-Y. Chen et al., 2020; Guenole &
Brown, 2014; Liu & Sriutaisuk, 2021; Sass et al., 2014;
Stark et al., 2006). However, bifactor models typically
have smaller loadings due to cross-loadings on the gen-
eral and specific factors (e.g., all models of p reviewed
herein have loadings ł 0.2 except Caspi et al., 2014).
Thus, in the bifactor model, smaller loading differences
across time or groups are likely to reflect a greater devia-
tion from the original loading and thus be more likely to
be indicative of non-invariance. Second, as non-
equivalence could be mixed (occur in opposite direc-
tions, e.g., subsequent wave could have lower or higher
loadings) the average difference based on absolute

values was calculated to clarify when non-equivalence
was negligible versus canceled out (Nye et al., 2019).
Finally, we note when loading differences are 50% or
more of the earlier wave’s loading, as this level of non-
invariance may introduce unacceptable levels of bias
(Guenole & Brown, 2014).

All analyses were performed in Mplus Version 8 (L.
K. Muthén & Muthén, 2017). Code is available here:
osf.io/fbd3h.

Results

Missing Data. As for the baseline model (St Clair et al.,
2017), participants’ data were included in the bifactor
model at each wave if they completed 85% of the origi-
nal 118 items, and 85% of each original measure
(Supplemental Table S1). Of the 2,403 participants,
99% (n = 2,372), 69% (n = 1,659) and 46% (n =
1,096) completed sufficient data to compute the bifactor
model at waves 1–3 respectively. All available data were
used for MI testing, resulting in unequal sample sizes
between gender groups and over time (14% fewer males
than females [1,099 and 1,273 respectively]; 30%missing
at Wave 2 vs Wave 1; 54% missing at Wave 3 vs Wave
1). Simulations have shown that this level of imbalance
between groups is not highly problematic for the DCFI
or DRMSEA used in invariance testing (Yoon & Lai,
2018). At this level of missingness, WLSMV yields
acceptably small levels of mean relative bias in loading
estimates and their standard errors (P.-Y. Chen et al.,
2020). Therefore, it was appropriate to estimate all mod-
els with WLSMV using raw data. As noted in ‘‘MI
Testing in Bifactor Models’’, multiple imputation or
adding predictors of missingness in WLSMV are not yet
feasible options for MI testing in large, complex models
(Asparouhov & Múthen, 2010; Liu & Sriutaisuk, 2021;
B. O. Muthén et al., 2015).

Measurement Invariance. Following running the original
model on the full baseline dataset (Supplement 1), the
configural gender multigroup model was tested. This
failed to converge on baseline data, so each gender was
modeled separately to identify sources of misfit. All
loadings were above cut-offs in the male model, but the
female model had a low loading (0.126) of MFQ24 (‘‘I
was a bad person’’) on the antisocial behavior specific
factor. Given the ambiguous wording of this item (e.g.,
endorsement could reflect low self-esteem instead of anti-
social behavior), it seemed theoretically appropriate to
drop this loading on the specific (but not the general) fac-
tor. Upon doing so, the configural multigroup model for
gender converged. (Only one other loading in females
was minimally below cut-off [0.24 on general factor], and
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thus was retained.) This modified model yielded excellent
fit in separate models for each gender (Table 3), with no
additional loadings below cut-offs, and no items having
modification indices above our cut-off of 100. The model
also yielded excellent fit in the whole sample at each
timepoint (Table 3), with all loadings significant and
above cut-offs (Supplemental Table S2). There were no
item loadings with modification indices.100 at all three
timepoints. Sparse data in one Wave 3 item had minimal
impact on the model (Supplement 1).

Model fit was excellent for configural, scalar, and resi-
dual invariance models across gender and time, using both
the single-group and multigroup approaches for time
(Table 3, Supplemental Table S3). In the single-group
model, only two obsessive-compulsive items required resi-
dual correlations across waves. Across gender and time,
comparing scalar and residual invariance models with the
next least constrained model (configural and scalar,
respectively), changes in CFI and RMSEA were less than
even the strictest criteria (Meade et al., 2008): CFI
declined at most by .001 and at worst RMSEA stayed the
same (Table 3, Supplemental Table S3). Thus, residual
MI was supported using both the single-group and multi-
group approach. However, testing the final single-group
models resulted in 43 days more computation time than
the multigroup approach (Supplement 1).

In the single-group model, the above findings are
based on models where factor autocorrelations were
allowed while cross-factors were modeled orthogonally
over time. This is because when heterotypic paths were
allowed, models yielded equivalent fit, and also sup-
ported residual invariance (Supplemental Table S3).
Therefore, the more parsimonious model was preferred,

in line with prior research (Gluschkoff et al., 2019).
However, significant but small (.08–.26, p\.01) cross-
lagged standardized effects were observed from Wave 1
to 3 with residual invariance modeled (Supplemental
Table S4). Findings were generally comparable when
scalar invariance was modeled; however, one significant
cross-lagged effect in the scalar model became non-
significant in the residual model. Reciprocal effects were
observed across p and aberrant thoughts specific factor,
and antisocial and worry specific factors (negative
effect). Unidirectional effects were observed from aber-
rant thoughts to antisocial specific factor and mood to
self-confidence specific factor.

Assessing change in parameters over time revealed
that most factors over all waves exhibited an average of
small non-invariance or less in under a quarter of items
(Table 4). Mixed non-invariance in p, aberrant thoughts
and mood specific factors contributed to some of the
negligible non-invariance observed. The aberrant
thoughts and antisocial specific factors exhibited an aver-
age of small threshold differences from Waves 1 to 3 in
approximately 50% and 75% of their respective thresh-
olds. The antisocial specific factor also had small or more
loading differences in at least half of the items for Waves
1–3 and 2–3 comparisons. However, only three loading
differences (each for a different factor) were approxi-
mately half the size of the earlier wave’s loading, and
these items had negligible threshold differences.

Discussion

This empirical example extends the limited prior work
on gender and longitudinal invariance of bifactor

Table 3. Fit Indices for Measurement Invariance Testing of the Bifactor Model of Psychopathology (p) from the Empirical Example.

Model N Chi square (x2) Df Parameters CFI TLI RMSEA

Baseline only models
Full sample 2,372 16,785 5,351 509 0.955 0.953 .030
Females only 1,273 10,935 5,351 509 0.960 0.959 .029
Males only 1,099 8,802 5,351 509 0.968 0.967 .024
Gender invariance 2,372
Configural 19,594 10,717 1,003 0.964 0.963 .026
Scalar 20,293 11,083 637 0.963 0.963 .026
Residual 18,149 11,204 516 0.972 0.972 .023

Wave 2 model 1,659 12,062 5,351 509 0.970 0.969 .027
Wave 3 model 1,096 9,229 5,351 509 0.974 0.973 .026
Waves 1 and 3a invariance single-group 2,382

Configural 30,373 21,933 1,023 0.975 0.974 .013
Scalar 30,599 22,307 649 0.975 0.975 .012
Residual 30,144 22,413 543 0.977 0.977 .012

Note. CFI = comparative fit index; TLI = Tucker–Lewis index; RMSEA = root mean square error of approximation.
aOther wave comparisons in Supplemental Table S3. Only homotypic paths were modeled; fit indices where heterotypic paths were included are shown

in Table S3.
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models. Of the existing studies of bifactor models of psy-
chopathology, only a small proportion have demon-
strated strong invariance (gender invariance (Deutz
et al., 2016) and longitudinal invariance (Deutz et al.,
2016, 2018; Forbes et al., 2021; Gluschkoff et al., 2019)),
all of which utilized ordered-categorical indicators.

These prior studies were conducted throughout child-
hood and early adolescence (Deutz et al., 2016, 2018)
and adulthood (Forbes et al., 2021; Gluschkoff et al.,
2019), whereas the present study covers the period from
adolescence into young adulthood, when mental illness
steeply increase (Kessler et al., 2007). In addition to

Table 4. Summary of Non-Invarianta Parameters Over Time from the Empirical Example Bifactor Model of Psychopathology (p).

Factor

Loading differences (Dl) Threshold differences (Dt)

w2—w1 w3—w2 w3—w1 w2—w1 w3—w2 w3—w1

p (general factor)
Parameters/total 4/106 5/106 9/106 8/295 9/295 68/295
Range (ABS) 0.103–0.171b 0.106–0.276 0.096–0.270 0.255–.327 0.246–0.424 0.246–0.499
ABS average 0.126 0.153 0.124 0.281 0.298 0.311
Averagec 0.126 –0.043 –0.025 0.200 0.298 0.247
% non-invariant 3.8% 4.7% 8.5% 2.7% 3.1% 23.1%
Summary \5% small Negligible mixed Negligible mixed Negligible mixed \5% small \25% small

sf1 (self-confidence)
Parameters/total 0 0 1 /13 0 0 4/52
Range (ABS) 0.106 0.249–0.379
ABS average 0.106 0.286
Average –0.106 –0.286
% of total factor 7.7% 7.7%
Summary Negligible Negligible \1/12 small Negligible Negligible \10% small

sf2 (antisocial)
Parameters/total 0 4/8 5 /8 1/8 1/8 6/8
Range (ABS) 0.155–0.227b 0.096–0.223 0.259 0.274 0.275–0.481
ABS average 0.188 0.142 0.259 0.274 0.362
Average 0.188 –0.142 0.259 0.274 0.362
% of total factor 50% 62.5% 12.5% 12.5% 75%
Summary Negligible 50% medium \ 2/3 small 1/8 small 1/8 small 75% small-med

sf3 (worry)
Parameters/total 0 1/7 0 0 0 1/21
Range (ABS) 0.098 0.302
ABS average 0.098 0.302
Average 0.098 0.302
% of total factor 14.3% 4.8%
Summary Negligible 1/7 small Negligible Negligible Negligible \5% small

sf4 (aberrant thoughts)
Parameters/total 3/17 2/17 3/17 2/33 3/33 15/33
Range (ABS) 0.090–0.131 0.102–0.115 0.108–0.220 0.260–0.317 0.264–0.304 0.246–0.419
ABS average 0.121 0.109 0.146 0.289 0.284 0.313
Averagec –0.033 0.109 –0.073 0.289 0.284 0.313
% of total factor 17.7% 11.8% 17.7% 6.1% 9.1% 45.5%
Summary Negligible mixed \ 1/8 small Negligible mixed \1/12 small \10% small \50% small

sf5 (mood)
Parameters/total 1/30 1/30 1/30 0 0 11/98
Range (ABS) 0.121 0.102 0.147b 0.248–0.379
ABS average 0.121 0.102 0.147 0.275
Averagec –0.121 0.102 0.147 –0.073
% of total factor 3.3% 3.3% 3.3% 10.2%
Summary \5% small \5% small \5% small Negligible Negligible Negligible mixed

Note. sf = specific factor (positive loading sf not discussed as this is purely a methods factor); ABS = absolute value.
aNon-invariance: Dl 0.10 = small, 0.20 = medium, 0.30 = large; Dt 0.25 = small, 0.50 = medium, 0.75 = large (Nye et al., 2019). b highest Dl (1 item) is

~50% of earlier wave loading (45%+ flagged, range=47%-52%) but Dt is \ small (<0.232). This level of loading invariance is very unlikely to

substantially affect findings in structural regression models (Guenole & Brown, 2014). c Averages may be below non-invariance cut-offs due to mixed

differences in parameters (some positive, some negative).
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fitting the data well at each of the three timepoints, the
present model appears to be equivalent across males and
females, and over 3 years of measurement. The empirical
example reveals the first model of p to establish longitu-
dinal residual invariance, using the guidelines advocated
above. This higher level of invariance is required for
demonstrating MI in factor models with ordered-
categorical items, indicating that changes in the items
over time are attributable to changes in the latent factors
over time (Liu et al., 2017; Millsap & Yun-Tein, 2004).
This strengthens the validity of any longitudinal associa-
tions to be made more than prior longitudinal studies of
p. The same applies to any conclusions to be made about
gender differences, given the demonstrated residual gen-
der invariance of the empirical example.

Although DCFI and DRMSEA supported residual
longitudinal MI, inspecting change in loadings and
thresholds revealed a more nuanced picture. Across all
waves, most factors exhibited negligible levels of non-
invariance, supporting their comparability over time
(Nye et al., 2019). The aberrant thoughts and antisocial
specific factors exhibited threshold differences which
could account for discernable effects (Nye et al., 2019).
However, this conclusion is tentatively based on prior
simulations of five-category indicators with no cross-
loadings (Nye et al., 2019); interestingly, the factors with
discernable threshold differences were the only ones
specified by a majority of binary items. This level of
non-invariance may in fact have limited practical conse-
quence: much larger threshold non-invariance was simu-
lated to detect group bias in structural regression
models, and all observed loading differences were well
below discernable levels (Guenole & Brown, 2014).
Other bifactor models of p which have established
strong MI by DCFI\0.01 are not immune to item-level
non-invariance (Deutz et al., 2018; Forbes et al., 2021;
Gluschkoff et al., 2019). For example, 60% of a factor’s
items showed large non-invariance (0.3+ ; Deutz et al.,
2018). In all cases, as in the present study, the largest
non-invariance was seen in specific factors. This points
to the importance of careful inspection of parameter
changes over time (or groups) in bifactor models even if
MI cut-offs have been met. Simulations are then needed
to guide researchers on the practical impact of various
levels of non-equivalence in bifactor models (Nye et al.,
2019). Simulations also need to model the impact of item
heterogeneity in threshold non-invariance, evident in
our empirical example (e.g., only one of three thresholds
for an item was non-invariant). With one exception
(Guenole & Brown, 2014), the above simulations all
modeled non-invariance as a uniform shift across all
thresholds in an item (P.-Y. Chen et al., 2020; D’Urso
et al., 2021; Liu & Sriutaisuk, 2021; Nye et al., 2019;
Sass et al., 2014; Stark et al., 2006).

The empirical example highlights the computational
demands of single-group MI testing of large, complex
models with multiple waves. Here, simultaneously test-
ing three waves in a single-group model (of 318 items)
resulted in non-convergence, a potential consequence of
a large data array (Vandenberg & Lance, 2000). The
bifactor models of p reviewed above which tested single-
group MI only had two waves (Castellanos-Ryan et al.,
2016; Deutz et al., 2016; Forbes et al., 2021; Gluschkoff
et al., 2019; Olino et al., 2018), which we also found fea-
sible. Therefore, assessing the present model using a
single-group framework required piecewise testing of
three two-wave models. This approach was very compu-
tationally costly, resulting in 43 more computation days
compared with the multigroup approach where all three
waves were tested simultaneously. Although the single-
group approach is favored as it accounts for the longitu-
dinal relationships between repeated measurements
(Vandenberg & Lance, 2000), in this example both
approaches yielded the same MI conclusion. We are not
aware of any simulation studies which have explored
under which conditions this conclusion would hold. The
present findings argue for such simulations to be per-
formed, to clarify whether a multigroup model is indeed
an appropriate approach for longitudinal MI testing in
large and complex models where a single-group model is
infeasible. Finally, as the empirical example was per-
formed using WLSMV, the findings illustrate the need
for development of the Bayesian estimator for MI test-
ing of polytomous items. Bayes has lower computational
demands for a large number of variables than WLSMV
(B. O. Muthén et al., 2015), and in multidimensional
models of binary data, has shown the greatest conver-
gence rates and lowest parameter bias, followed by
WLSMV, and thenML (Garnier-Villarreal et al., 2021).

Although the single-group model allows testing of
heterotypic paths, many studies from our review of MI
testing in bifactor models did not assess this (Brett et al.,
2020; Deutz et al., 2018; Fong et al., 2022; Forbes et al.,
2021; Grygiel et al., 2019; Hawes et al., 2018; Porsius
et al., 2015). Most which did include heterotypic paths
did not report the magnitude or significance of these
associations (Agtarap et al., 2021; Bottesi et al., 2019;
Deutz et al., 2016). Only the present study and one other
compared models allowing only homotypic paths versus
those allowing heterotypic paths: in both cases fit was
equivalent, and MI conclusions were the same from
either model, and thus the more parsimonious model
was preferred (Gluschkoff et al., 2019). When testing
longitudinal MI in single-group bifactor models, we rec-
ommend heterotypic paths be assessed and justification
be provided for which model is ultimately pursued.
Ideally, heterotypic estimates should be reported as part
of MI testing, as these may be insightful for subsequent
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research, for example, to help understand continuity
and change in psychopathology over the lifespan.

Bifactor models which do report heterotypic paths
should demonstrate longitudinal MI to increase confi-
dence that estimates are reflective of true heterotypy
instead of artifact from non-invariance. This is particu-
larly important as significant heterotypic paths are small
(standardized estimates from 0.06 to 0.26 in the present
and prior studies) (Castellanos-Ryan et al., 2016; Deutz
et al., 2020; Gluschkoff et al., 2019; McElroy et al.,
2018). To our knowledge, these path coefficients have
only been reported in bifactor models of psychopathol-
ogy. Ideally, the same level of MI should be used for
comparability across the literature. Differing levels of
MI being modeled may change conclusions regarding
heterotypic paths, as we observed. Of the prior studies
of p which have reported heterotypic paths, only one
exhibited scalar invariance (Gluschkoff et al., 2019), and
metric invariance (Snyder et al., 2017), three demon-
strated configural invariance (Castellanos-Ryan et al.,
2016; McElroy et al., 2018; Olino et al., 2018), and three
did not even meet that threshold, using different models
at each wave (Class et al., 2019; Deutz et al., 2020;
Greene & Eaton, 2017). Thus, only the first two studies,
indicated by ordered-categorical and continuous vari-
ables respectively, exhibited appropriate levels of MI to
compare factor covariances over time. Study compar-
ability seems further hampered by power: significant
heterotypic paths have been observed in large samples
(n.1,000) including the present study (Castellanos-
Ryan et al., 2016; Deutz et al., 2020; Gluschkoff et al.,
2019; McElroy et al., 2018), but not in smaller samples
(n\600), although standardized estimates (..1) were
comparable or larger to some which were significant in
the bigger studies (Class et al., 2019; Olino et al., 2018;
Snyder et al., 2017). Further adding to this heterogene-
ity, bifactor models of p can cover different symptom
domains, and thus the interpretation of p can vary
across studies, with different specific factors observed,
under varying degrees of reliability (Watts et al., 2020).
Consistent testing of longitudinal MI is necessary to
address one source of heterogeneity in this literature,
before firmer conclusions can be made regarding hetero-
typic change in p and specific factors over development.

General Discussion

This article highlights key issues in assessing bifactor
models with respect to MI. We underscore the impor-
tance of MI testing in bifactor models and current gaps
which hinder such testing. Our literature review revealed
that few studies have assessed longitudinal MI in bifac-
tor models. The paucity of guidelines for how to deter-
mine MI in bifactor models resulted in inconsistency in

what level MI was tested to, and which fit indices and
cut-offs were used for determining MI. This is exempli-
fied in the literature on the p-factor, where strong longi-
tudinal MI testing was omitted or inappropriately
applied in longitudinal studies of p (Castellanos-Ryan
et al., 2016; McElroy et al., 2018; Noordhof et al., 2015;
Snyder et al., 2017). This results in questionable inter-
pretations of latent means and factor correlations over
time (van de Schoot et al., 2012). Furthermore, most
studies using ordered-categorical indicators (and all
studies of p) did not test residual invariance (Bottesi
et al., 2019; Deutz et al., 2016, 2018; Fong et al., 2022;
Forbes et al., 2021; Gluschkoff et al., 2019; Grygiel
et al., 2019; Hawes et al., 2018), which is required for
change in latent means to be accurate when models are
based on ordinal data (Liu et al., 2017; Millsap & Yun-
Tein, 2004). We, therefore, reviewed simulation litera-
ture on MI testing relevant to bifactor models and
applied our resulting recommendations using an empiri-
cal example.

Based on a review of the MI simulation literature, the
following recommendations are made for MI cut-offs
for bifactor models: (a) due to the complexity of bifactor
models, Dx2 is inappropriate for invariance testing, even
more so when large samples are used (e.g., ø 1,000)
(Cheung & Rensvold, 2002); (b) DCFI\0.01 appears to
be an acceptable indicator of MI (all the way to residual
invariance) for bifactor models with continuous and
ordered-categorical indicators (e.g., F. F. Chen, 2007;
Cheung & Rensvold, 2002; Sass et al., 2014); (c)
DRMSEA\0.007 also appears to be an acceptable indi-
cator of MI for models with ordered-categorical indica-
tors in sample sizes of 1,000 or more (Sass et al., 2014),
but DRMSEA is not recommended for MI testing in
models with continuous indicators (Khojasteh & Lo,
2015; Meade et al., 2008). However, these guidelines
must be applied with caution, as they are based on simu-
lations of first-order models in all but one study
(Khojasteh & Lo, 2015). This highlights the need for
more simulations of MI testing in bifactor models, to
devise appropriate cut-offs.

Additional caution is warranted for MI testing of
models specified by many items. This is particularly rele-
vant for structural psychopathology research, where
models based on more comprehensive sets of symptoms
are advocated to enable advancement in this field
(Lahey et al., 2021). Furthermore, modeling a construct
with too few indicators can hinder accurate detection of
multidimensionality (Watts et al., 2021). To date, bifac-
tor models of p have been much smaller than the 106
items from the empirical example, with most reviewed
here ranging from 9 to 15 items (Caspi et al., 2014;
Castellanos-Ryan et al., 2016; Class et al., 2019; Deutz
et al., 2018; Forbes et al., 2021; Gluschkoff et al., 2019;
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Greene & Eaton, 2017; Lahey et al., 2012; Olino et al.,
2018; Snyder et al., 2017). The concerns with larger
models are as follows. First, there is a negative associa-
tion between the number of items in a model and the
incremental fit indices (e.g., CFI, TLI): models with
30+ indicators are more likely to yield problematic fit
(Gignac, 2007). Second, DCFI and DRMSEA may not
adequately detect parameter differences across groups in
factors specified by many items, as noted in simulations
of single-factor non-hierarchical models (D’Urso et al.,
2021). Thus, inspection of parameter changes over time
(or groups) is advisable in larger models, even if MI cut-
offs support invariance. Such inspection revealed some
non-invariance in the empirical example. However, the
practical impact of this non-invariance is unknown, as
simulations of various levels of non-invariance in bifac-
tor models have yet to be performed (Nye et al., 2019).

The inability of DCFI and DRMSEA to detect non-
invariance may be a function of model complexity inde-
pendent of scale length, as some non-invariance was
present in bifactor models of 11–15 items which met MI
cut-offs (Deutz et al., 2018; Forbes et al., 2021;
Gluschkoff et al., 2019). The complexity of the bifactor
model, such as multiple latent dimensions, residual fac-
tors, and cross-loadings, makes it tend to fit any type of
data well (Bonifay & Cai, 2017). The impact of this com-
plexity of the ability to identify non-invariance must be
addressed in future simulations. Such work should also
jointly consider how the complexity and number of indi-
cators in a model affect MI testing.

The present article underscores the challenges in esti-
mator choice for MI testing of bifactor models specifi-
cally with ordered-categorical indicators: (a) the need
for residual invariance testing in ordered-categorical
data means that ML-based approaches are currently not
appropriate; (b) all levels of MI testing are possible using
WLSMV, but single-group longitudinal MI testing is
computationally intensive for large bifactor models, and
may not converge with multiple waves; (c) Bayesian esti-
mation, a full-information approach which for large
models has greater convergence rates than WLSMV
(Garnier-Villarreal et al., 2021), still needs development
for MI testing of polytomous indicators. Regarding
indicator type, we note that convergence rates for MLR
(assuming a continuous distribution) and robust catego-
rical least squares (similar to WLSMV) increase as the
number of categories increases (Rhemtulla et al., 2012).
Thus, it is possible the convergence issues we observed
would not have occurred if more categories were present
in our data, or continuous indicators were used. Further
work should explore these issues. In the meantime, simu-
lations testing the appropriateness of the multigroup
model for longitudinal MI are warranted.

More attention needs to be paid to the testing and
reporting of heterotypic paths as part of longitudinal MI,
as this was inconsistent in our literature review of longitu-
dinal MI in bifactor models. To our knowledge, only
bifactor models of psychopathology have reported hetero-
typic path coefficients, yet in models with varying degrees
of longitudinalMI. Our empirical example revealed differ-
ing conclusions regarding heterotypic paths depending on
the level of MI modeled. For an accurate understanding
of continuities and discontinuities of general and specific
factors over time, homotypic and heterotypic paths need
to be reported at sufficient levels of MI testing, and com-
pared across studies at equivalent levels of MI. These
cross-wave covariances between latent factors are accu-
rate when at least metric invariance has been established
with continuous indicators, or scalar invariance with
ordered-categorical indicators (Liu et al., 2017).

As missing data are common in longitudinal studies,
we note the following regarding MI testing with missing
data rates up to 50%: (a) when testing scalar invariance
with ML in unbalanced groups due to attrition or other-
wise, the DCFI and certainly DRMSEA cut-offs we advo-
cate above appear to be acceptable (Yoon & Lai, 2018);
(b) although a limited-information estimator, WLSMV
appears to be acceptable for MI testing in ordered-
categorical data in sample sizes of 1,000 or more (P.-Y.
Chen et al., 2020). Alternatives to mitigate bias due to
missingness using WLSMV are infeasible for large, com-
plex models (adding predictors of missingness can be pro-
hibitively computationally burdensome (Asparouhov &
Múthen, 2010; B. O. Muthén et al., 2015) or in need of
further development (pooling nested model test statistics
across multiply imputed datasets is currently only possible
for x2, not CFI and RMSEA (Liu & Sriutaisuk, 2021).

Conclusion

Our review and empirical example highlights the limita-
tions in longitudinal MI testing of bifactor models.
Nonetheless, using the guidelines advocated herein to
establish MI allows findings from bifactor models to be
more confidently interpreted. Such increased clarity will
help improve comparability and consistency across the
literature pertaining to these highly utilized models.
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