3 research outputs found
Hypertrophic remodelling in cardiac regulatory myosin light chain (MYL2) founder mutation carriers
AIMS: Phenotypic heterogeneity and incomplete penetrance are common in patients with hypertrophic cardiomyopathy (HCM). We aim to improve the understanding in genotype-phenotype correlations in HCM, particularly the contribution of an MYL2 founder mutation and risk factors to left ventricular hypertrophic remodelling. METHODS AND RESULTS: We analysed 14 HCM families of whom 38 family members share the MYL2 c.64G > A [p.(Glu22Lys)] mutation and a common founder haplotype. In this unique cohort, we investigated factors influencing phenotypic outcome in addition to the primary mutation. The mutation alone showed benign disease manifestation with low penetrance. The co-presence of additional risk factors for hypertrophy such as hypertension, obesity, or other sarcomeric gene mutation increased disease penetrance substantially and caused HCM in 89% of MYL2 mutation carriers (P = 0.0005). The most prominent risk factor was hypertension, observed in 71% of mutation carriers with HCM and an additional risk factor. CONCLUSION: The MYL2 mutation c.64G > A on its own is incapable of triggering clinical HCM in most carriers. However, the presence of an additional risk factor for hypertrophy, particularly hypertension, adds to the development of HCM. Early diagnosis of risk factors is important for early treatment of MYL2 mutation carriers and close monitoring should be guaranteed in this case. Our findings also suggest that the presence of hypertension or another risk factor for hypertrophy should not be an exclusion criterion for genetic studies
A mutation update for the FLNC gene in myopathies and cardiomyopathies
Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype-phenotype correlations based on available evidence
A mutation update for the FLNC gene in myopathies and cardiomyopathies
Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype-phenotype correlations based on available evidence.Genetics of disease, diagnosis and treatmen